Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Ta có P=10a+b/a+b
=9a+a+b/a+b
=1+9a/a+b
=1+9/a+b/a
=1+9/1+b/a
Để P có giá trị nhỏ nhất=>9/1+b/a cũng phải đạt giá trị nhỏ nhất=>1+b/a đạt giá trị lớn nhất<=>b/a có giá trị lớn nhất=>b lớn nhất ; a nhỏ nhất
Mà a và b là số có 1 chữ số và a khác 0=>a=1 ; b=9=>ab=19
Khi đó P=19/1+9=1,9
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- Bạn Trần Hoàng Hải đó có làm đúng không vậy
- Người ta kêu tìm \(\overline{ab}\) kia mà
- Tự dưng đi tìm \(P\) làm gì vậy
- Kết quả là \(\overline{ab}=19\) đúng không
- Nếu đúng thì k nhé, nếu sai thì thôi vậy!
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
Đề sai; giải sửa luôn nhá
\(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}100a+10b+c=n^2-1\\100c+10b+a=n^2-4n+4\end{cases}}\)
\(\Rightarrow\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)
\(\Leftrightarrow99a-99c=4n-5\)
\(\Leftrightarrow99\left(a-c\right)=4n-5\Rightarrow4n-5⋮99\)
Ta thấy \(100\le\overline{abc}=n^2-1\le999\Leftrightarrow101\le n^2\le1000\Leftrightarrow10< n< 31\)
\(\Rightarrow45< 4n-5< 119\Rightarrow4n-5=99\Rightarrow n=26\)
\(\Rightarrow\overline{abc}=26^2-1=675\)
Vậy \(\overline{abc}=675\)
100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999
\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000
\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32
\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4
\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4
\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5
(100.a+10.b+c)-(100c+10b+a)=4n-5
99a-99c=4n-5
\(\Rightarrow\)4n-5\(⋮\)99(1)
Vì 10<n<32\(\Rightarrow\)35<4n<123(2)
Từ (1) và(2) \(\Rightarrow\)4n-5=99
\(\Rightarrow\)n=99+5 :4 =26
\(\overline{abc}\)=\(26^2\)-1
\(\overline{abc}\)=675
\(\overline{cba}\)=576
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .