K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

a) Số tiền ông An phải trả cho việc thuê xe ô tô từ thứ Hai đến thứ Sáu là:

900.5 + 8x = 4 500 + 8x (nghìn đồng).

Số tiền ông An phải trả cho việc thuê xe ô tô từ thứ Hai đến thứ Sáu là:

1 500.2 + 10y = 3 000 + 10y (nghìn đồng).

Tổng số tiền ông An phải trả cho việc thuê xe trong một tuần là:

4 500 + 8x + 3 000 + 10y = 7 500 + 8x + 10y (nghìn đồng).

Để tổng số tiền ông An phải trả không quá 14 triệu đồng thì

7 500 + 8x + 10y ≤ 14 000

⇔ 8x + 10y ≤ 6 500.

⇔ 4x + 5y ≤ 3 250.

Vậy bất phương trình biểu thị mối liên hệ giữa x và y sao cho tổng số tiền ông An phải trả không quá 14 triệu đồng là 4x + 5y ≤ 3 250.

b)

Vẽ đường thẳng d: 4x + 5y = 3 250 trên mặt phẳng tọa độ.

Lấy gốc tọa độ O(0; 0) và tính 4.0 + 5.0 = 0 < 3 250.

Do đó miền nghiệm của bất phương trình là nửa mặt phẳng có bờ là đường thẳng d không chứa gốc tọa độ và cả đường thẳng d (miền không bị gạch kể cả biên)

Ôn An muốn thuê một chiếc ô tô (có lái xe) trong một tuần. Giá thuê xe được cho (ảnh 1)

24 tháng 9 2023

Tham khảo:

a)

Ta có 14 triệu = 14 000 (nghìn đồng)

Phí cố định là: 900.5 + 1500.2 = 7500 (nghìn đồng)

Phí tính theo quãng đường là:

x km trong các ngày từ thứ Hai đến thứ Sáu là 8x (nghìn đồng)

y km trong 2 cuối tuần là 10y (nghìn đồng)

Tổng số tiền ông An phải trả là 8x+10y +7500 (nghìn đồng)

Vì số tiền không quá 14 triệu đồng nên ta có :

\(\begin{array}{l}8x + 10y +7500 \le 14000\\ \Leftrightarrow 4x + 5y \le 3250\end{array}\)

Vậy bất phương trình cần tìm là \(4x + 5y \le 3250\)

b)

 

Bước 1: Vẽ đường thẳng \(4x + 5y = 3250\)(nét liền)

Bước 2: Thay tọa độ điểm O(0;0) vào biểu thức 4x+5y ta được:

4.0+5.0=0<3250

=> Điểm O thuộc miền nghiệm

=> Miền nghiệm là nửa mặt phẳng bờ là đường thẳng \(4x + 5y = 3250\) và chứa gốc tọa độ và (x;y) nằm trong miền tam giác OAB kể cả đoạn AB.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a)

Nếu \(0 < x \le 2\) thì \(T(x) = 1,2x\) (triệu đồng)

Nếu \(x > 2\) thì \(T(x) = 1,2.2 + 0,9.(x - 2) = 0,9x + 0,6\) (triệu đồng)

Số tiền phải trả sau khi thuê x ngày là

\(T(x) = \left\{ \begin{array}{l}1,2x\quad \quad \quad \;(0 < x \le 2)\\0,9x + 0,6\quad (x > 2)\end{array} \right.\)

b) \(T(2) = 1,2.2=2,4\)  (triệu đồng)

Ý nghĩa: số tiền khách phải trả khi thuê 2 ngày là 2,4 triệu đồng

\(T(3) = 0,9.3+0,6 = 3,3\)  (triệu đồng)

Ý nghĩa: số tiền khách phải trả khi thuê 3 ngày là 3,3 triệu đồng

\(T(5) = 0,9.5+0,6=5,1\)

Ý nghĩa: số tiền khách phải trả khi thuê 5 ngày là 5,1 triệu đồng

24 tháng 9 2023

Tham khảo:

a) Vì \(0 - 2.0 + 6 = 6 > 0\) nên (0;0) là một nghiệm của bất phương trình đã cho.

b) Vì \(0 - 2.1 + 6 = 4 > 0\) nên (0;1) là một nghiệm của bất phương trình đã cho.

Vì \(1 - 2.0 + 6 = 7 > 0\) nên (1;0) là một nghiệm của bất phương trình đã cho.

Vì \(1 - 2.1 + 6 = 5 > 0\) nên (1;1) là một nghiệm của bất phương trình đã cho.

c) Vẽ đường thẳng \(\Delta :x - 2y + 6 = 0\) đi qua hai điểm \(A(0;3)\) và \(B\left( { - 2;2} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 - 2.0 + 6 = 6 > 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

14 tháng 5 2019

Đáp án: D

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Trong cùng mặt phẳng toạ độ Oxy, vẽ ba đường thẳng:

\({d_1}:x - 2y =  - 2\);

\({d_2}:7x - 4y = 16\)

\({d_3}:2x + y =  - 4\)

Thay tọa độ điểm O vào \(x - 2y\) ta được:

\(0 - 2.0 = 0 \ge  - 2\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

Thay tọa độ điểm O vào \(7x - 4y\) ta được:

\(7.0 - 4.0 = 0 \le 16\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

Thay tọa độ điểm O vào \(2x + y\)  ta được:

\(2.0 + 0 = 0 \ge  - 4\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

b)

 

Miền nghiệm của hệ là phần không bị gạch bỏ chung của cả 3 miền nghiệm trên.

Chú ý

Ở câu a, có thể thay điểm O bằng các điểm khác.

24 tháng 9 2023

Tham khảo:

 

a) Vẽ đường thẳng \(\Delta :y = 2\) đi qua hai điểm \(A(0;2)\) và \(B\left( {1;2} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \({y_O} = 0 < 2\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), không chứa gốc tọa độ O

(miền không gạch chéo trên hình)

 

b) Vẽ đường thẳng \(\Delta ':x = 4\) đi qua hai điểm \(A'(4;0)\) và \(B'\left( {4;1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta '\) và \({x_O} = 0 < 4\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

- Lập hệ:

Do số lượng máy nhập vào phải là số tự nhiên nên ta có \(x \ge 0,y \ge 0\).

Từ HĐ 1 ta có hai bất phương trình là \(x + y \le 100\) và \(2x + y \le 120\)

Vậy hệ bất phương trình từ HĐ 1 là

\(\left\{ \begin{array}{l}x + y \le 100\\2x + y \le 120\\x \ge 0\\y \ge 0\end{array} \right.\).

Cặp số (x;y)=(50;10) là một nghiệm của hệ BPT vì thay x= 50, y= 10 ta được:  

\(\left\{ {\begin{array}{*{20}{l}}
{50 + 10 \le 100}\, \text {(Đúng)}\\
{2.50 + 10 \le 120}\, \text {(Đúng)}\\
{50 \ge 0}\, \text {(Đúng)}\\
{10 \ge 0}\, \text {(Đúng)}
\end{array}} \right.\)

24 tháng 9 2023

Tham khảo:

Vẽ đường thẳng \(d:x + y - 3 = 0\) đi qua hai điểm \(A(0;3)\) và \(B\left( {1;2} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 + 0 - 3 =  - 3 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(d\), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

Vẽ đường thẳng \(d': - 2x + y + 3 = 0\) đi qua hai điểm \(A(1; - 1)\) và \(B\left( {2;1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 + 3 = 3 > 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d'\), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

 

Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.