Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo đề bài ta có: \(x\ge100\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=x-1+x-2+...+x-100=6050\)
Ta có: \(x-1+x-2+...+x-100=6050\)
\(\Rightarrow\left(x+x+...+x\right)-\left(1+2+...+100\right)=6050\)
\(\Rightarrow100x-5050=6050\)
\(\Rightarrow100x=11100\)
\(\Rightarrow x=111\)
Vậy \(x=111\)
\(B=\left(x^2+1\right)\left(y^2+1\right)-\left(x+4\right)\left(x-4\right)-\left(y-5\right)\left(y+5\right)\)
\(=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\)
\(=x^2y^2+42\)
Vì \(x^2y^2\ge0\)với mọi x , y nên \(B\ge42\)
\(B_{min}=42\Leftrightarrow x^2y^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
1. Để A \(\in\)Z <=> x + 3 \(⋮\)4
=> x + 3 \(\in\)B(4) = {0; 4; 8; 12;16; ....}
=> x \(\in\){-3; 1; 5; 9; 13; ...}
2. Ta có: A = \(\frac{x+1}{x-2}=\frac{\left(x-2\right)+3}{x-2}=1+\frac{3}{x-2}\)
Để A \(\in\)Z <=> 3 \(⋮\)x - 2 <=> x - 2 \(\in\)Ư(3) = {1; -1; 3; -3}
<=> x \(\in\){3; 1; 5; -1}
3. Ta có: A = \(\frac{3x-5}{x-2}=\frac{3\left(x-2\right)+1}{x-2}=3+\frac{1}{x-2}\)
Để A \(\in\)Z <=> 1 \(⋮\)x - 2 <=> x - 2 \(\in\)Ư(1) = {1; -1}
<=> x \(\in\){3; 1}
1. x=111