Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có: n2 +12n = n(n + 12 )
Nếu n > 2 thì n( n+ 12) chia hết cho n.Là hợp số
Nếu n= 0 thì n(n+12) = 0 => không phải là hợp số cũng không là số nguyên tố
Nếu n = 1 thì n(n +12) = 13 -> là số nguyên tố
Vậy n=1
b) Nếu n > 0 thì 3n + 6 chia hết cho 3 => là hợp số
Nếu n= 0 thì 3n + 6 = 7 => là số nguyên tố
Vậy n = 0
2) Vì 1050 chia hết cho 5 và 5 chia hết cho 5 nên
1050 - 5 sẽ chia hết cho 5 => là hợp số
gọi 3 phần đó là a,b,c
Theo bài ra : a,b,c tỉ lệ với 2/5 ; 3/4 ; 1/6 ; a2 + b2 + c2 = 24309
\(\Rightarrow\frac{a}{\frac{2}{5}}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{1}{6}}\)
\(\Rightarrow\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a^2}{\frac{4}{25}}=\frac{b^2}{\frac{9}{16}}=\frac{c^2}{\frac{1}{36}}=\frac{a^2+b^2+c^2}{\frac{4}{25}+\frac{9}{16}+\frac{1}{36}}=\frac{24309}{\frac{2701}{3600}}=32400\)
\(\Rightarrow a^2=5184\Rightarrow\orbr{\begin{cases}a=72\\-72\end{cases}}\); \(b^2=18225\Rightarrow\orbr{\begin{cases}b=135\\b=-135\end{cases}}\); \(c^2=900\Rightarrow\orbr{\begin{cases}c=30\\c=-30\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}M=72+135+30=237\\M=\left(-72\right)+\left(-135\right)+\left(-30\right)=-237\end{cases}}\)
1. \(\left(\frac{1}{2}\right)^n=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^n=\frac{1^5}{2^5}\)
\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^5\)
Vậy \(n=5\)
2. \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
Vậy \(n=3\)
3. \(\frac{16}{2^n}=2\)
\(2^n=\frac{16}{2}\)
\(2^n=8=2^3\)
Vậy \(n=3\)
1. (1/2)2 = 1/32 <=> (21)n = (25)n <=> 1.n = 5.1 <=> n = 5
=> n = 5
2) 343/125 = (7/5)n <=> (7/5)3 = (7/5)n <=> 3 = n
=> n = 3
3) 16/2n = 2 <=> 16.2n <=> 2n = 2/16 <=> 2n = 1/8 <=> 2n = 8 <=> 2n = 23 <=> n = 3
=> n = 3