K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

tốn diện tích!

6 tháng 4 2016

x1= (1-căng 97)/8

x2=(1+căng 97)/8

18 tháng 10 2015

\(x+y+xy=11\Leftrightarrow x\left(y+1\right)+y+1=12\Leftrightarrow\left(x+1\right)\left(y+1\right)=12\)(1)

\(y\left(z+1\right)+z+1=48\Leftrightarrow\left(y+1\right)\left(z+1\right)=48\left(2\right)\)

\(z\left(x+1\right)+x+1=36\Leftrightarrow\left(z+1\right)\left(x+1\right)=36\left(3\right)\)

Lấy vế nhân vế của (1) (2) và (3) ta đc : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=12\cdot36\cdot48=144^2\)

=> \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=144\) hoặc = -144 

(+) Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=144\)

=> z + 1 = 144 : 12 = 12 => z = 11 

=> \(x+1=144:48=3\Rightarrow x=2\)

=> \(y+1=144:36=4\Leftrightarrow y=3\)

(+) Với ( x +1 )( y +1 )( z + 1 ) = -144 ( tương tự )

14 tháng 5 2021

a, Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó \(PT< =>t^1+4t-5=0\)

\(< =>t^2-1+4t-4=0\)

\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)

\(< =>\left(t-1\right)\left(t+5\right)=0\)

\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)

\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy ...

14 tháng 5 2021

Thay m = 2 vào , ta có :

\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)

\(< =>x^2-6x+6=0\)

\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)

\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)

10 tháng 8 2016

3xbình =(x+2) bình => 3x bình = x bìn+ 4 x +4 => 2x bình - 4x -4 =0 => 2. (x bình - 2x -1)=0

15 tháng 10 2017

2. \(\sqrt{x^2+6x+9}=3x-6\)

\(\sqrt{\left(x-3\right)^2}=3x-6\)

\(x-3=3x-6\)

\(x-3-3x+6=0\)

\(-2x+9=0\)

\(-2x=-9\)

\(x=\frac{9}{2}\)

3. \(\sqrt{x^2-4x+4}-2x+5=0\)

\(\sqrt{\left(x-2\right)^2}-2x+5=0\)

\(x-2-2x+5=0\)

\(-x+3=0\)

\(x=3\)

16 tháng 8 2017

Hép mi nha

16 tháng 8 2017

1)\(x^2-3x+1+\sqrt{2x-1}=0\)

ĐK:\(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)

2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )

\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)

\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)

\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)

Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)

\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)

\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)

4 tháng 3 2016

f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0

ta xét Th (x^3-4x^2-2x-15)/(x^2+x+1)=0

\(\Leftrightarrow\frac{x^3-4x^2-2x-15}{x^2+x+1}=\frac{\left(x-5\right)\left(x^2+x+3\right)}{x^2+x+1}\Rightarrow x=5\)

x2+x+3=0

12-4(1.3=-11

=>pt ko có nghiệm thực

=>x=5 vì (x^3-4x^2-2x-15)/(x^2+x+1)<0

=>\(x\in\left\{-\infty;5\right\}\)

25 tháng 7 2017

\(\sqrt{-x^2+2x-1}\) có nghĩa khi 

\(-x^2+2x-1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\) ( luôn đúng)

=> với mọi x biểu thức luôn có nghĩa

b) \(\frac{\sqrt{x+1}}{x}\) có nghĩa khi:

\(\hept{\begin{cases}x+1\ge0\\x\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ne0\end{cases}}\)

c) \(\sqrt{-x^2-2}\)có nghĩa khi 

\(-x^2-2\ge0\Leftrightarrow-\left(x^2-2\right)\ge0\Leftrightarrow x^2-2\le0\Leftrightarrow x^2\le2\Leftrightarrow-2\le x\le2\)

d) \(\sqrt{2x^2-1}\)có nghĩa khi

\(2x^2-1\ge0\Leftrightarrow2x^2\ge1\Leftrightarrow x^2\ge\frac{1}{2}\Leftrightarrow-\frac{1}{2}\ge x\ge\frac{1}{2}\)