Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\text{Giả sử: }\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)
\(\Rightarrow x=2k;y=4k;z=6k\)
Thay vào: x-y +z= 2k- 4k+ 6k= 8
= 4k= 8
=> k= \(\frac{8}{4}=2\)
=> x= 2. 2= 4
y= 4. 2= 8
z= 6.2 = 12
Vậy \(\begin{cases}x=4\\y=8\\z=12\end{cases}\)
Bài 2:
Giải:
Gọi số học sinh 4 khối 6, 7, 8, 9 là a, b, c, d ( a,b,c,d thuộc N* )
Ta có: \(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}\) và a + b + c + d = 660
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}=\frac{a+b+c+d}{3+3,5+4,5+4}=\frac{660}{15}=44\)
+) \(\frac{a}{3}=44\Rightarrow a=132\)
+) \(\frac{b}{3,5}=44\Rightarrow b=154\)
+) \(\frac{c}{4,5}=44\Rightarrow c=198\)
+) \(\frac{d}{4}=44\Rightarrow d=176\)
Vậy khối 6 có 132 học sinh
khối 7 có 154 học sinh
khối 8 có 198 học sinh
khối 9 có 176 học sinh
a) \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\) và \(xyz=-108\)
Đặt: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=k\)
\(\Rightarrow x=2k\)
\(y=\frac{3}{2}k\)
\(z=\frac{4}{3}k\)
\(\Rightarrow xyz=2k.\frac{3}{2}k.\frac{4}{3}k=4k^3=-108\Rightarrow k^3=-27\Rightarrow k=\sqrt[3]{-27}=-3\)
Vậy:
\(x=2.\left(-3\right)=-6\)
\(y=\frac{3}{2}.\left(-3\right)=-\frac{9}{2}\)
\(z=\frac{4}{3}.\left(-3\right)=-4\)
\(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{20}=\frac{z}{32}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(3x+5y+7z=123\)
ADTCCDTSBN, ta có:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{3x+5y+7z}{21+100+224}=\frac{123}{345}=\frac{41}{115}\)
\(\Rightarrow x=\frac{41}{115}.7=\frac{287}{115}\)
\(y=\frac{41}{115}.20=\frac{164}{23}\)
\(z=\frac{41}{115}.32=\frac{1312}{115}\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{5}=\frac{y}{4}.\frac{1}{5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{4}=\frac{z}{7}.\frac{1}{4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Suy ra : \(\begin{cases}\frac{2x}{30}=3\\\frac{3y}{60}=3\\\frac{z}{28}=3\end{cases}\) \(\Rightarrow\begin{cases}x=45\\y=60\\z=84\end{cases}\)
b) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)
\(=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{45}{9}=5\)
Suy ra : \(\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}\) \(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)
a ) \(\frac{x}{3}=\frac{y}{5};\frac{y}{5}=\frac{z}{7}\)
Quy đồng : \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{186}{62}=3\)
\(\Rightarrow\frac{x}{15}=3\Rightarrow x=45\)
\(\Rightarrow\frac{y}{20}=3\Rightarrow y=60\)
\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)
Vậy x = 45 , y = 60 , z = 84
1) \(ℕ\subsetℤ\subsetℚ\)
\(\frac{-3}{5}\)có thuộc Z
2) \(\frac{x-3}{15}\)= \(\frac{-7}{5}\)
(x-3).5 = 15.(-7)
(x-3).5 = -105
x-3 = -105:5
x-3 = -21
x = -21+3
x= -18
CHÚC BẠN HỌC TỐT
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .