Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(pt\Leftrightarrow \tan 2x(1-\cos 2x)-(1-\cos 2x)=0\Leftrightarrow (\tan 2x-1)(1-\cos 2x)=0\)
2. Đặt \(t=\sin x+\cos x\Rightarrow t^2=1+2\sin x.\cos x\) thay vào phương trình ta được
\(t-3(t^2-1)=1\Leftrightarrow 3t^2-t-2=0\)
1/ \(pt\Leftrightarrow\left(3cos^2x-sin^2x\right)\left(cos^2x-sin^2x\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)\left(\dfrac{1}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)=0\)
\(\Leftrightarrow\left(2cos2x+1\right)cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)
2/ \(pt\Leftrightarrow\left(sinx-1\right)\left(sin^2x+sinx+6\right)=0\)
\(\Leftrightarrow sinx=1\)
3/ \(pt\Leftrightarrow\dfrac{1-cos2x}{2}-4sin2x+\dfrac{7}{2}\left(1+cos2x\right)=0\)
\(\Leftrightarrow3cos2x-4sin2x=-4\)
\(\Leftrightarrow5\left(\dfrac{3}{5}cos2x-\dfrac{4}{5}sin2x\right)=-4\)
\(\Leftrightarrow cos\left(2x+arccos\dfrac{3}{5}\right)=-\dfrac{4}{5}\)
4,5 giải tương tự câu 3
1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)
\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)
\(\Leftrightarrow5\sin2x+5\cos2x=5\)
\(\Leftrightarrow\cos2x+\sin2x=1\)
\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)
\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)
\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
1. \(4\cos^2x-6\sin^2x+5\sin2x-4=0\)
\(\Leftrightarrow4\cos^2x-6\sin^2x+10\sin x\cos x-4\left(\cos^2x+\sin^2x\right)=0\)
\(\Leftrightarrow10\sin x\cos x-10\sin^2x=0\)
\(\Leftrightarrow10\sin x\left(\cos x-\sin x\right)=0\)
2. \(\sqrt{3}\cos^2x+2\sin x\cos x-\sqrt{3}\sin^2x-1=0\)
\(\Leftrightarrow\left(\sqrt{3}\cos^2x+\sin x\cos x\right)+\left(\sin x\cos x-\sqrt{3}\sin^2x\right)-1=0\)
\(\Leftrightarrow2\cos x\left(\dfrac{\sqrt{3}}{2}\cos x+\dfrac{1}{2}\sin x\right)+2\sin x\left(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x\right)-1=0\)
\(\Leftrightarrow2\cos x.\cos\left(\dfrac{\Pi}{6}-x\right)+2\sin x.\sin\left(\dfrac{\Pi}{6}-x\right)-1=0\)
\(\Leftrightarrow\cos\dfrac{\Pi}{6}+\cos\left(2x-\dfrac{\Pi}{6}\right)+\cos\left(2x-\dfrac{\Pi}{6}\right)-\cos\dfrac{\Pi}{6}-1=0\)
\(\Leftrightarrow\cos\left(2x-\dfrac{\Pi}{6}\right)=\dfrac{1}{2}\)
3. \(2\sin^22x-3\sin2x\cos2x+\cos^22x=2\)
\(\Leftrightarrow2\sin^22x-3\sin2x\cos2x+\cos^22x-2\left(\sin^22x+\cos^22x\right)=0\)
\(\Leftrightarrow3\sin2x\cos2x+\cos^22x=0\)
\(\Leftrightarrow\cos2x\left(3\sin2x+\cos2x\right)=0\)
-TH1: ...
- TH2: \(\cos2x=-3\sin2x\) mà \(\cos^22x+\sin^22x=1\) suy ra ...
4. \(4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}=3\)
\(\Leftrightarrow4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}-3\left(\cos^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x=0\)
\(\Leftrightarrow\dfrac{1+\cos x}{2}+\dfrac{1}{2}\sin x=0\)
\(\Leftrightarrow\cos x+\sin x=-1\)