Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)
Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\)
Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.
\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)
\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
Tại những điểm cách O một đoạn x thì biên độ giảm \(2.5\sqrt{x}\)lần
=> biên độ tại điểm M cách O một đoạn 25cm là \(\frac{2}{2,5.\sqrt{25}} = 0.16cm. \)
M trễ pha hơn O:
\(u_M=0.16\cos(4\pi t - 2\pi\frac{OM}{\lambda})= 0.16\cos(40\pi t - \frac{5\pi}{3})cm.\)
Số điểm cực đại trên đoạn AG là số giá trị k thỏa mãn \(-AG \leq (k+\frac{\triangle \phi}{2\pi})\lambda \leq AG \Rightarrow -\frac{AB}{4}.3=10.875cm \leq (k+0.5)\lambda \leq 10.875\\ \Rightarrow -5.94 \leq k \leq 4.94 \Rightarrow k = -5,-4,\ldots,0,1,\ldots,4\)
có 10 điểm dao động cực đại trên đoạn AG
Chọn đáp án B
x A M = A c os ( ω t − 2 π d 1 λ ) x B M = A cos ( ω t + π − 2 π d 1 λ )
phương trình sóng tại M
x M = x A M + x B M = − 2 A sin d 2 + d 1 λ . sin ( ω t − d 2 + d 1 λ π )
Biên độ sóng tại M: A M = 2 A sin d 2 − d 1 λ π ; tại M nếu A M = A 2
⇒ sin d 2 − d 1 λ π = ± 1 2 ⇒ d 2 − d 1 λ π = π 4 + k π 2 ⇒ d 2 − d 1 = λ 4 + k λ 2
Xét trên AB
d 2 A − d 1 A ≤ d 2 − d 1 ≤ d 2 B − d 1 B ⇔ − A B ≤ λ 4 + k λ 2 ≤ A B
Ta có: f = ω 2 π = 10 H z ; λ = v t = 3 c m
⇒ − 20,5 ≤ k ≤ 19,5 ⇒ k = 0, ± 1, ± 2... ± 19, − 20
⇒ có 40 điểm.
a)\(U_M=2Acos\left(\pi\frac{\left(d_2-d_1\right)}{\lambda}\right)\) \(cos\left(\omega t-\pi\frac{d_1+d_2}{\lambda}\right)\)
thay số vào ta đc
\(U_M=\frac{\sqrt{2}}{2}cós\left(20\pi t-\frac{29\pi}{4}\right)\)
b) số cực đại \(\frac{-AB}{\lambda}\le n\le\frac{AB}{\lambda}\)
nên \(-2,75\le n\le2,75\)
có 5 giá trị n nguyên, vậy số cực đại là 5
số cực tiểu \(\frac{-AB}{\lambda}-\frac{1}{2}\le n\le\frac{AB}{2}-\frac{1}{2}\)
thay số tương tự nhé
ừ thì bước sóng bằng 8cm đúng rồi
còn d2 với d1 thì k quan trọng đâu, lấy cái nào trừ cái nào cũng đc
Đáp án C