\(\left(x-3y\right)^2+\left(2x-1\right)^4\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

1.

Do: $(x-3y)^2\geq 0; (2x-1)^4\geq 0$ với mọi $x,y\in\mathbb{R}$

$\Rightarrow A\geq 0+0+3=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x-3y=2x-1=0$

$\Leftrightarrow x=\frac{1}{2}; y=\frac{1}{6}$

2.

$|x-2|\geq 0$

$|3x-2y|\geq 0$

$\Rightarrow B\geq 0+0-4=-4$

Vậy $B_{\min}=-4$

Giá trị này đạt tại $x-2=3x-2y=0\Leftrightarrow x=2; y=3$

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

3.

$|x+1|\geq 0, \forall x\in\mathbb{R}$

$|y-3|\geq 0, \forall y\in\mathbb{R}$

$\Rightarrow |x+1|+|y-3|+2\geq 2$

$\Rightarrow \frac{1}{|x+1|+|y-3|+2}\leq \frac{1}{2}$

$\Rightarrow C\geq \frac{-4}{2}=-2$

Vậy $C_{\min}=-2$. Giá trị này đạt tại $x+1=y-3=0$

$\Leftrightarrow x=-1; y=3$

4. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-5|+|x-1|=|5-x|+|x-1|\geq |5-x+x-1|=4$

$\Rightarrow D=|x-5|+|x-1|+7\geq 11$

Vậy $D_{\min}=11$. Giá trị này đạt tại $(5-x)(x-1)\geq 0$

$\Leftrightarrow 5\geq x\geq 1$

1 tháng 8 2017

1. A = (-2)(-3) - 5.|-5| + 125.\(\left(-\dfrac{1}{5}\right)^2\)
= 6 - 25 + 125.\(\dfrac{1}{25}\)
= -19 + 5
= -14
@Shine Anna

1 tháng 8 2017

Đăng ít thôi

a: =>-3/2+x-7=5-1/3x+4/15

=>4/3x=413/30

hay x=413/40

b: \(\Leftrightarrow5-\dfrac{3}{2}x=-\dfrac{22}{3}\cdot\dfrac{-11}{8}=\dfrac{121}{12}\)

=>3/2x=-61/12

hay x=-61/18

c: (3x+2)2+|3x+2y|=0

=>3x+2=0 và 3x=-2y

=>x=-2/3 và -2y=-2

=>(x,y)=(-2/3;1)

30 tháng 3 2017

cho vài k đi bà con ơi

3 tháng 8 2017

1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ

3 tháng 8 2017

2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ

30 tháng 1 2017

bài tập tết nâng cao phải ko

mk cũng có nhưng chưa làm dc

27 tháng 1 2020

tìm 2 số nguyên a và b biết :a+b=-1 và a.b=-12.Giup mình nha

18 tháng 2 2017

a) x=53

b) x=17

c) x=5;x=-5

d) x=17

e) x=5

g) ???

18 tháng 2 2017

......

đáp số:?

25 tháng 6 2017

a, \(2\left|2x-3\right|=\dfrac{1}{2}\)

\(\Rightarrow\left|2x-3\right|=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}2x-3=\dfrac{1}{4}\\2x-3=-\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{8}\\x=\dfrac{11}{8}\end{matrix}\right.\)

b, \(7,5-3\left|5-2x\right|=-4,5\)

\(\Rightarrow3\left|5-2x\right|=12\)

\(\Rightarrow\left|5-2x\right|=4\)

\(\Rightarrow\left\{{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)

c, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left|3x-4\right|\ge0;\left|3y+5\right|\ge0\)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\) với mọi giá trị của \(x;y\in R\).

Để \(\left|3x-4\right|+\left|3y+5\right|=0\) thì

\(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy.............

Chúc bạn học tốt!!!

25 tháng 6 2017

\(\left[{}\begin{matrix}\\\end{matrix}\right.\)cái này là hoặc

\(\left\{{}\begin{matrix}\\\end{matrix}\right.\) cái này là và

\(a,\left(x+3\right)\left(y+2\right)=1\)

=> x+3 và y+2 thuộc UC(1)={1; -1}

x+31-1
x-2-4
y+21-1
y-1-3

Vậy x=-2; y=-4

       x=-1; y=-4

Câu sau tương tự

13 tháng 8 2019

\(a,\left(x+3\right)\left(y+2\right)=1\)

Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)

KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)

\(d,3x+4y-xy=16\)

\(=3x-xy+4y-12=4\)

\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)

\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)

Chia các trường hợp như câu a của chị ra em nhé

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)