Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{-3}{35}.\frac{-5}{7}=\frac{3}{48}\)
b) \(\frac{-3}{35}:\frac{-2}{5}=\frac{3}{14}\)
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
1) 3 CÁCH VIẾT: \(\frac{3}{-5};\frac{-3}{5};-\frac{3}{5}\)
2) - Số hữu tỉ lớn hơn 0 là số hữu tỉ dương.
- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm.
- Số hữu tỉ 0 là số hữu tỉ ko âm cx ko dương.
3) Gíá trị tuyệt đối của một số hữu tỉ x là khoảng cách từ x đến điểm 0 trên trục số.
4) Lũy thừa bậc n của của một số hữu tỉ là tích của n thừa số bằng nhau
5) Nhân hai lũy thừa cùng cơ số : \(a^n.a^m=a^{n+m}\)
Chia hai lũy thừa cùng cơ số : \(a^n:a^m=a^{n-m}\left(n\ge m,a\ne0\right)\)
Lũy thừa của lũy thừa : \(\left(a^n\right)^m=a^{n.m}\)
Lũy thừa của một thương: \(\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}\left(b\ne0\right)\)
6) Tỉ số của hai số hữu tỉ là thương của phép chia a cho b.
VD : \(\frac{8}{2}\) = 4
7) Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b}=\frac{c}{d}\) ( b,c là trung tỉ , a,d là ngoại tỉ)
t/c : ad =bc=\(\frac{a}{b}=\frac{c}{d}\)
\(ad=bc=\frac{b}{a}=\frac{d}{c}\)
\(ad=bc=\frac{b}{d}=\frac{a}{c}\)
\(ad=bc=\frac{d}{b}=\frac{c}{a}\)
T/c của dãy tỉ số bằng nhau;\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}=\frac{a-c-e}{b-d-f}=\frac{a-c+e}{b-d+f}\)
8) Số vô tỉ là số thập phân vô hạn ko tuần hoàn
vd : \(\sqrt{2}\),\(\sqrt{5}\),\(\sqrt{7}\),.................................
9) Số hữu tỉ và số vô tỉ đc gọi chung là số thực.
Trục số thực là trục số biểu diễn các số thực
10) Căn bậc hai của một số a ko âm là số x sao cho \(^{x^2}\) =a
1/ \(\frac{3}{5}=\frac{6}{10}=\frac{9}{15}=\frac{12}{20}\)
2/ Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0.
số 0 không phải là số hữu tỉ âm cũng không phải là số hữu tỉ dương
3/ giá trị tuyệt đối của số hữu tỉ x được bỏ dấu âm
4/Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x
5/nhân 2 luỹ thừa cùng cơ số: \(2^2.2^3\)
chia 2 luỹ thừa cùng cơ số:\(2^2:2^3\)
luỹ thừa của 1 luỹ thừa:\(\left(2^2\right)^3\)
luỹ thừa của 1 tích: \(5.5=5^2\)
luỹ thừa của 1 thương:\(25:5=5^1\)
\(a)\)
Ta có :
\(1-\frac{2}{3}=\frac{1}{3};1-\frac{4}{5}=\frac{1}{5};1-\frac{7}{8}=\frac{1}{8};1-\frac{3}{4}=\frac{1}{4}\)
\(1-\frac{9}{10}=\frac{1}{10};1-\frac{8}{9}=\frac{1}{9};1-\frac{5}{6}=\frac{1}{6};1-\frac{6}{7}=\frac{1}{7}\)
Do \(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{7}>\frac{1}{8}>\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow1-\frac{1}{3}< 1-\frac{1}{4}< 1-\frac{1}{5}< 1-\frac{1}{6}< 1-\frac{1}{7}< 1-\frac{1}{8}< 1-\frac{1}{9}< 1-\frac{1}{10}\)
\(\Rightarrow\frac{2}{3}< \frac{3}{4}< \frac{4}{5}< \frac{5}{6}< \frac{6}{7}< \frac{7}{8}< \frac{8}{9}< \frac{9}{10}\)
Nếu \(\frac{a}{b}\)là 1 số thuộc dãy trên thì số tiếp theo là :
\(\frac{a+1}{b+1}\)
\(b)\)
Ta có :
\(a\left(a+2\right)=a^2+2a\)
\(b\left(a+1\right)=ab+b\)
Sorry , đến bước này mik chịu
~ Ủng hộ nhé
Phần b) Ý bạn là so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+2}\)
LÀm 1 ý còn các ý khác tương tự
1) - 3 < 0 Để \(-\frac{3}{x-6}\) là số hữ tỉ dương khi
x - 6 < 0 => x < 6
3,
a) (−23+37):45+(−13+47):45
= \(-\frac{5}{21}:\frac{4}{5}+\frac{5}{21}:\frac{4}{5}\)
= \(\left(-\frac{5}{21}+\frac{5}{21}\right):\frac{4}{5}\)
= \(0:\frac{4}{5}=0\)
2,
a) \(\frac{-3}{4}\).\(\frac{12}{-5}\).(\(\frac{-25}{6}\))
= \(\frac{-3.4.3.\left(-5\right).5}{4.\left(-5\right).3.3}\)
= \(-5\)
b) (−2).\(\frac{-38}{21}\).\(\frac{-7}{4}\).(\(\frac{-3}{8}\))
= \(\frac{-2.\left(-38\right)\left(-7\right)\left(-3\right)}{\left(-7\right)\left(-3\right)\left(-2\right)\left(-2\right).8}\)
= \(\frac{19}{8}\)
c) (\(\frac{11}{12}:\frac{33}{16}\)).\(\frac{3}{5}\)
= \(\left(\frac{11}{12}.\frac{16}{33}\right).\frac{3}{5}\)
= \(\frac{4}{9}.\frac{3}{5}\)
= \(\frac{4}{15}\)
d) \(\frac{7}{23}\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left(\frac{-41}{10}\right)\)
= \(\frac{-287}{203}\)
3. Tính:
a) (\(\frac{-2}{3}+\frac{3}{7}\)):\(\frac{4}{5}\)+(\(\frac{-1}{3}+\frac{4}{7}\)):\(\frac{4}{5}\)
= (\(\frac{-2}{3}+\frac{3}{7}\)\(+\)\(\frac{-1}{3}+\frac{4}{7}\)) : \(\frac{4}{5}\)
= 0 : \(\frac{4}{5}\)
= 0
b) \(\frac{5}{9}\):(\(\frac{1}{11}-\frac{5}{22}\))+\(\frac{5}{9}\):(\(\frac{1}{15}-\frac{2}{3}\))
= \(\frac{5}{9}\): \(\frac{-3}{22}\)+ \(\frac{5}{9}\): \(\frac{-3}{5}\)
= \(\frac{5}{9}\): \(\frac{-81}{110}\)
= \(\frac{-550}{729}\)
Bài 1:
Ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)
=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)
=> ab = 92
Bài 2:
Hữu hạn: -7/16; 2/125; -9/8
Vô hạn tuần hoàn: -5/3; 5/6; -3/11
Chúc bạn học tốt !!!
Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)
\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)
Vậy \(\overline{ab}=92\)
Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)
Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)
− 9 ⋅ 2 3 ⋅ 5 4 : − 7 = − 9. 5 6 . − 1 7 = 15 14