K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2. Một hãng nước hoa dự định dùng hai nguồn nguyên liệu để chiết xuất ít nhất $280$ lít nước hoa Eau de Toilette (EDT) và $18$ lít nước hoa Parfum. Với một tấn nguyên liệu của nguồn I, người ta có thể chiết xuất được $40$ lít EDT và $1,2$ lít Parfum. Với một tấn nguyên liệu của nguồn II, người ta có thể chiết xuất được $20$ lít EDT và $3$ lít chất Parfum. Giá mỗi tấn nguyên liệu từ nguồn I là $4$...
Đọc tiếp

Câu 2. Một hãng nước hoa dự định dùng hai nguồn nguyên liệu để chiết xuất ít nhất $280$ lít nước hoa Eau de Toilette (EDT) và $18$ lít nước hoa Parfum. Với một tấn nguyên liệu của nguồn I, người ta có thể chiết xuất được $40$ lít EDT và $1,2$ lít Parfum. Với một tấn nguyên liệu của nguồn II, người ta có thể chiết xuất được $20$ lít EDT và $3$ lít chất Parfum. Giá mỗi tấn nguyên liệu từ nguồn I là $4$ trăm triệu đồng và từ nguồn II là $3$ trăm triệu đồng. Người ta phài dùng bao nhiêu tấn nguyên liệu từ mỗi nguồn để chi phí mua nguyên liệu là ít nhất mà vẫn đạt được mục tiêu đề ra? Biết rằng cơ sở cung cấp nguyên liệu nguồn I chỉ có thể cung cấp tối đa $10$ tấn và nguồn II tối đa là $9$ tấn.

0
25 tháng 9 2023

Tham khảo:

Gọi x, y lần lượt là số kilogam sản phẩm loại A, loại B mà công ty đó sản xuất.

Ta có các điều kiện ràng buộc đối với x, y như sau:

-          Hiển nhiên \(x \ge 0,y \ge 0\)

-          Nguyên liệu loại I có số kilogam dự trữ là 8 kg nên \(2x + y \le 8\)

-          Nguyên liệu loại II có số kilogam dự trữ là 24 kg nên \(4x + 4y \le 24\)

-          Nguyên liệu loại III có số kilogam dự trữ là 8 kg nên \(x + 2y \le 8\)

Từ đó ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}2x + y \le 8\\4x + 4y \le 24\\x + 2y \le 8\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh  \(O(0;0),A(0;4),\)\(B(\frac{8}{3};\frac{8}{3}),\)\(C(4;0).\)

Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có: \(F = 30x + 50y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(F = 30.0 + 50.0 = 0\)

Tại \(A(0;4),\)\(F = 30.0 + 50.4 = 200\)

Tại \(B(\frac{8}{3};\frac{8}{3}),\)\(F = 30.\frac{8}{3} + 50.\frac{8}{3} = \frac{{640}}{3}\)

Tại \(C(4;0):\)\(F = 30.4 + 50.0 = 120\)

F đạt giá trị lớn nhất bằng \(\frac{{640}}{3}\) tại \(B(\frac{8}{3};\frac{8}{3}).\)

Vậy công ty đó nên sản xuất \(\frac{8}{3}kg\) sản phẩm mỗi loại để tiền lãi thu về lớn nhất.

7 tháng 5 2018

Chọn C

+ Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

+ Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

24 tháng 6

Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

Theo đơn đặt hàng, một nhà máy sản xuất giấy sẽ phải cung cấp ít nhất 160 tấn giấy loại A và 100 tấn giấy loại B. Hiện tại nhà máy có 2 dây chuyền I và II cùng sản xuất 2 loại giấy A và B. Chi phí sản xuất, năng suất, lượng chất thải của mỗi dây chuyền trong một giờ như sau:- Dây chuyền I: Chi phí 6 triệu. Sản xuất được 1 tấn giấy loại A và 1 tấn giấy loại B, đồng thời tạo ra 0,2 tấn chất...
Đọc tiếp

Theo đơn đặt hàng, một nhà máy sản xuất giấy sẽ phải cung cấp ít nhất 160 tấn giấy loại A và 100 tấn giấy loại B. Hiện tại nhà máy có 2 dây chuyền I và II cùng sản xuất 2 loại giấy A và B. Chi phí sản xuất, năng suất, lượng chất thải của mỗi dây chuyền trong một giờ như sau:

- Dây chuyền I: Chi phí 6 triệu. Sản xuất được 1 tấn giấy loại A và 1 tấn giấy loại B, đồng thời tạo ra 0,2 tấn chất thải.
- Dây chuyền II: Chi phí 12 triệu. Sản xuất được 4 tấn giấy loại A và 1 tấn giấy loại B, đồng thời tạo ra 0,3 tấn chất thải.

Được biết, lượng chất thải trong quá trình sản xuất không được vượt quá 42 tấn. Hãy phân phối thời gian hoạt động của hai dây chuyền sao cho thỏa mãn đơn đặt hàng và chi phí sản xuất thấp nhất.

0
24 tháng 6

Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất...
Đọc tiếp

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai loại sản phẩm. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 chỉ làm việc không quá 4 giờ. Gỉa sử số tấn sản phẩm loại I, II sản xuất trong một ngày lần lượt là x,y

a) viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó

b) gọi F( triệu đồng ) là số tiền lãi thu được trong một ngày

c) Cần sản xuất bao nhiêu tấn sản phẩm loại I và loại II trong một ngày để số tiền lãi thu được là cao nhất

0