K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

ĐKXĐ: \(x\ge3\)

Ta có: \(\frac{2}{3}\sqrt{9x-27}+\sqrt{x-3}=6+\sqrt{4x-12}\)

\(\Rightarrow\frac{2}{3}.3\sqrt{x-3}+\sqrt{x-3}=6+2\sqrt{x-3}\)

\(\Rightarrow2\sqrt{x-3}+\sqrt{x-3}-2\sqrt{x-3}=6\)

\(\Rightarrow\sqrt{x-3}=6\Rightarrow x-3=36\Rightarrow x=39\)

                           Vậy x = 39

25 tháng 10 2020

a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)

ĐK : x ≥ 0

⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)

⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)

⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)

⇔ \(-3\sqrt{x}=-5\)

⇔ \(\sqrt{x}=15\)

⇔ \(x=225\)( tm )

b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)

ĐK : x ≤ 3

⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)

⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)

⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)

⇔ \(3\sqrt{3-x}=6\)

⇔ \(\sqrt{3-x}=2\)

⇔ \(3-x=4\)

⇔ \(x=-1\)( tm )

c) \(\sqrt{9x^2+12x+4}=4\)

⇔ \(\sqrt{\left(3x+2\right)^2}=4\)

⇔ \(\left|3x+2\right|=4\)

⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)

d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)

ĐK : x ≥ 1

⇔  \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔  \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)

⇔ \(\sqrt{x-1}=1\)

⇔ \(x-1=1\)

⇔ \(x=2\)( tm )

1 tháng 4 2020

đề bài như trên

\(\Leftrightarrow\sqrt{9\left(x-3\right)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4\left(x-3\right)}=7\)

\(\Leftrightarrow3\sqrt{x-3}+\sqrt{x-3}-\frac{1}{2}.2\sqrt{x-3}=7\)

\(\Leftrightarrow3\sqrt{x-3}=7\)

\(\Leftrightarrow\sqrt{x-3}=\frac{7}{3}\left(đk:x\ge3\right)\)

\(\Leftrightarrow x-3=\frac{49}{9}=>x=\frac{76}{9}\left(thoảman\right)\)

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

17 tháng 9 2021

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

30 tháng 7 2018

Phần a mình giải được r ạ mn giúp e với

30 tháng 7 2018

b)  ĐK:  \(x\le3\)

\(\sqrt{x-3}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)

\(\Leftrightarrow\)\(\sqrt{x-3}-\sqrt{9.\left(x-3\right)}+1,25\sqrt{16\left(3-x\right)}=6\)

\(\Leftrightarrow\)\(\sqrt{x-3}-3\sqrt{3-x}+5\sqrt{3-x}=6\)

\(\Leftrightarrow\)\(3\sqrt{3-x}=6\)

\(\Leftrightarrow\)\(\sqrt{3-x}=2\)

\(\Leftrightarrow\)\(3-x=4\)

\(\Leftrightarrow\)\(x=-1\) (t/m)

Vậy....

NV
25 tháng 7 2020

Bạn viết lại để bài giùm

Có duy nhất câu c bạn viết đúng đề (có dấu "="), còn lại tới 3 câu ko biết dâu "=" ở đâu

6 tháng 11 2021

ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow5\sqrt{x-3}+3\sqrt{x-3}-\sqrt{x-3}=7\)

\(\Leftrightarrow7\sqrt{x-3}=7\Leftrightarrow\sqrt{x-3}=1\)

\(\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)

17 tháng 5 2021

`a)A=\sqrt{4+2sqrt3}`

`=\sqrt{3+2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}`

`=sqrt3+1`

`B)1/(2-sqrt3)+1/(2+sqrt3)`

`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`

`=2+sqrt3+2-sqrt3`

`=4`

`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`

`đk:x>=3`

`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`

`<=>2sqrt{x-3}=8`

`<=>sqrt{x-3}=4`

`<=>x-3=16`

`<=>x=19`

Vậy `S={19}`

17 tháng 5 2021

`a)A=\sqrt{4+2sqrt3}`

`=\sqrt{3+2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}`

`=sqrt3+1`

`B)1/(2-sqrt3)+1/(2+sqrt3)`

`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`

`=2+sqrt3+2-sqrt3`

`=4`

`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`

`đk:x>=3`

`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`

`<=>2sqrt{x-3}=8`

`<=>sqrt{x-3}=4`

`<=>x-3=16`

`<=>x=19`

Vậy `S={19}`