Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1
a) \(\sqrt{0,36}+\sqrt{0,49}=0,6+0,7=1,3\)
b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}=\frac{2}{3}-\frac{5}{6}\)
=\(-\frac{1}{6}\)
Bài 2
a)\(x^2=81\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
b) \(\left(x-1\right)^2=\frac{9}{16}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{3}{4}\\x-1=\frac{-3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
c) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a) \(4x^2-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\2x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
b) \(\left(x-1\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=\frac{3}{4}\\x-1=-\frac{3}{4}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7}{4}\\x=\frac{1}{4}\end{array}\right.\)
c) \(\sqrt{x}=4\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow x=16\)
d) \(\sqrt{x+1}=2\left(ĐKx\ge-1\right)\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
1.
ĐKXĐ: \(x\ge0\) cho tất cả các câu
a) x = 6 (thỏa mãn)
b) vô nghiệm vì VT≥0 mà VP < 0
c) x = 5 (thỏa mãn)
d) \(\sqrt{x}=\left|-31\right|=31\)
x = 961(thỏa mãn)
bài 2 tương tự
Bài 2:
a) \(x^2-23=0\)
\(\Rightarrow x^2=0+23\)
\(\Rightarrow x^2=23\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{23}\\x=-\sqrt{23}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{23};-\sqrt{23}\right\}.\)
b) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7-0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{7}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{49}\)
\(\Rightarrow x=49\)
Vậy \(x=49.\)
Chúc bạn học tốt!
a) x = \(\dfrac{-64}{3}\)
b) x = -3,5
c) x = 80
d) x = -1.162
e) x = 0,9436
g) x \(\in\varnothing\)
a) 16/3 : x = -1/4
=> x = 16/3 : (-1/4)
=> x = 16/3 . (-4)
=> x = -64/3
Vậy x= -64/3
b)2x - 13 = -8
=> 2x = (-8) + 1
=> 2x = -7
=> x = -7/2
d) 0,944 - 2x = 3,268
=> 2x = 0,944 - 3,268
=> 2x = -2,324
=> x = (-2,324) : 2
=> x = -1,162
g) \(\sqrt{5^2-3^2}=-\sqrt{81-x}\)
=> \(\sqrt{25-9}\)= \(-\sqrt{81-x}\)
=> \(\sqrt{16}\)=\(-\sqrt{81-x}\)
=> 4=\(-\sqrt{81-x}\)
tới đây mik bí r hk bt lm nữa
Chọn
Đáp án đúng là:
16
D
Nếu \(\sqrt{x}=2\)thì \(x^2=16\)
Vậy đáp án là D) 16