K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Ta có: x = − b 2 a > 0  nên trục đối xứng nằm bên phải trục Oy

Đồ thị cắt trục tung tại điểm (0; c) nằm dưới trục hoành ( vì c < 0).

Do đó, đồ thị B là đồ thị của hàm số đã cho.

Đáp án B

7 tháng 2 2017

Đáp án D

4 tháng 7 2017

Đáp án: A

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Quan sát đồ thị:

điểm \(\left( {1; - 2} \right)\) (tức là có x =1; y=-2) thuộc đồ thị.

điểm \(\left( {2; - 1} \right)\) (tức là có x=2; y=-1) thuộc đồ thị hàm số.

điểm (0;0) không thuộc đồ thị hàm số.

b) Từ điểm trên Ox: \(x = 0\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 0 \right) =  - 1\)

Từ điểm trên Ox: \(x = 3\) ta kẻ đường thẳng song song với Oy ta được: \(f\left( 3 \right) = 0\)

c) Giao điểm của đồ thị và trục Ox là điểm \(\left( {3;0} \right)\).

5 tháng 2 2019

Đáp án: A (Thay trực tiếp).

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?b) Quan sát dạng đồ thị của hàm số...
Đọc tiếp

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)

a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?

b) Quan sát dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)  trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị.

c) Thực hiện phép biến đổi \(y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\) Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu.

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có đồ thị hàm số \(y =  - 2{x^2}\)

 

Nhìn vào 2 đồ thị, ta thấy dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)giống với dạng đồ thị \(y =  - 2{x^2}\)

b) Tọa độ điểm cao nhất là \(\left( {5;50} \right)\)

c) Ta có: \(S(x) = y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\)

\({(x - 5)^2} \ge 0 \Rightarrow  - 2{(x - 5)^2} + 50 \le 50 \Rightarrow S(x) \le 50\)

Do đó diện tích lớn nhất của mảnh đất rào chắn là 50 \(({m^2})\) khi x = 5.

6 tháng 7 2018

Đáp án D