Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của 2 đường chéo.
\(AB^2=OA^2+OB^2\) (Áp dụng định lý Pytago vào tam giác OAB vuông tại O)
\(BC^2=OC^2+OB^2\) (Áp dụng định lý Pytago vào tam giác OBC vuông tại O)
\(OA^2+OB^2-OC^2-OB^2=AB^2-BC^2\)
\(OA^2-OC^2=8^2-7^2=64-49=15\left(cm\right)\)
\(OA^2+OD^2=AD^2=4^2=16\left(cm\right)\) (Áp dụng định lý Pytago vào tam giác OAD vuông tại O)
\(OA^2-OC^2-OA^2-OD^2=15-16\)
\(OC^2+OD^2=1\)
mà \(OC^2+OD^2=CD^2\) (Áp dụng định lý Pytago vào tam giác OCD vuông tại O)
\(CD^2=1\)
\(CD=1\left(cm\right)\)
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
a, Cách vẽ :
Vẽ tam giác BDC
+) DC = 25cm
+) Vẽ cung tâm tròn D có bán kính 10cm và cung tròn tâm C có bán kính 20cm . Giao điểm của 2 cung tròn là B
- - Vẽ điểm A: Vẽ cung tròn tâm B có bán kính 4cm và cung tròn tâm D có bán kính 8cm. Giao điểm của hai cung tròn này là điểm A. Nối các cạnh BD, BC, DA, BA.
=> Vậy là ta đã vẽ được tứ giác ABCD thỏa mãn điều kiện đề bài.
b, Ta có : \(\frac{AB}{BD}=\frac{4}{10}=\frac{2}{5};\frac{BD}{DC}=\frac{10}{25};\frac{AD}{BC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}=\frac{AD}{BC}\)
=> tam giác ABD ∽ tam giác BDC ( c - c - c )
c, Tam giác ABD ∽ tam giác BDC ( theo chứng minh câu b )
\(\Rightarrow\widehat{ABD}=\widehat{BDC}\), mà 2 góc ở vị trí sole trong
\(\Rightarrow AB//DC\)hay ABCD là hình thang