Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Do đó, điểm A nằm trên đường tròn đã cho. Khi đó, qua điểm A ta vẽ được đúng 1 tiếp tuyến đến đường tròn (I).
\(Cos_{\widehat{E}}=\frac{25}{EF}\Rightarrow Cos_{42^0}=\frac{25}{EF}\Rightarrow EF=\frac{25}{Cos_{42^o}}=33.64\)
a) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\left(\sqrt{5}-2\right)-\left(\sqrt{5}+2\right)=-4\)
b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\frac{1}{\sqrt{2}}.\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1\right)=-\sqrt{2}\)
c) \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}=\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)
\(=7-3\sqrt{5}-\left(7+3\sqrt{5}\right)=-6\sqrt{5}\)
a)
3 x 2 − 5 x + 1 x 2 − 4 = 0 ⇔ 3 x 2 − 5 x + 1 = 0
hoặc x 2 – 4 = 0 ( 2 )
+ Giải (1): 3 x 2 – 5 x + 1 = 0
Có a = 3; b = -5; c = 1 ⇒ Δ = ( - 5 ) 2 – 4 . 3 = 13 > 0
Phương trình có hai nghiệm:
+ Giải (2): x 2 – 4 = 0 ⇔ x 2 = 4 ⇔ x = 2 hoặc x = -2.
Vậy phương trình có tập nghiệm
b)
2 x 2 + x − 4 2 − ( 2 x − 1 ) 2 = 0 ⇔ 2 x 2 + x − 4 − 2 x + 1 2 x 2 + x − 4 + 2 x − 1 = 0 ⇔ 2 x 2 − x − 3 2 x 2 + 3 x − 5 = 0 ⇔ 2 x 2 − x − 3 = 0 ( 1 )
hoặc 2 x 2 + 3 x – 5 = 0 ( 2 )
+ Giải (1): 2 x 2 – x – 3 = 0
Có a = 2; b = -1; c = -3 ⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 3/2.
+ Giải (2): 2 x 2 + 3 x – 5 = 0
Có a = 2; b = 3; c = -5 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm x = 1 và x = c/a = -5/2.
Vậy phương trình có tập nghiệm