Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a< b mà 2 > 0 nên 2a < 2b (*)
Cộng cả 2 vế của (*) với 5c ta được: 2a + 5c < 2b + 5c
giả sử các bất đẳng thức trên đều đúng, tức là ;
\(a\left(1-b\right)>\frac{1}{4},\) \(b\left(1-c\right)>\frac{1}{4},\) \(c\left(1-a\right)>\frac{1}{4}\)
Suy ra: \(a\left(1-b\right)b\left(1-c\right)c\left(1-a\right)>\frac{1}{4}.\frac{1}{4}.\frac{1}{4}\)
\(\Leftrightarrow a\left(1-1\right)b\left(1-b\right)c\left(1-c\right)>\frac{1}{64}\)
Điều này vô lí vì: \(\begin{cases}0>a\left(1-a\right)\le\frac{1}{4}\\0>b\left(1-b\right)\le\frac{1}{4}\\0>c\left(1-c\right)\le\frac{1}{4}\end{cases}\) \(\Rightarrow\left(Đpcm\right)\)
a) Giả sử:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )
=> đpcm
b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)
Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)
Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)
c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)
\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\))
\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)
Dấu ''='' xảy ra khi \(3a=5b=12:2\)
\(\Leftrightarrow a=2;b=\frac{6}{5}\)
1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)
Áp dụng tính chất: Nếu a > b và c là số bất kì thì a + c > b + c.
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là C.