Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: Sử dụng đường tròn lượng giác
Cách giải:
Chu kỳ dao động T = 2s
Quan sát trên hình vẽ ta thấy quãng đường vật đi được từ thời điểm t1 = 0,5s ứng với vị trí (1) đến thời điểm t2 = 1s ứng với vị trí (2) là: (5 + 5 3 ) = 13,7cm
Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.
Biểu diễn dao động bằng véc tơ quay ta có:
Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.
Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.
Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.
Bạn xem thêm lí thuyết phần này ở đây nhé
Phương pháp véc tơ quay và ứng dụng | Học trực tuyến
Bài 1 :
T = 2π / ω = 0.4 s
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần
⇒ 2 ________________________________________... lần
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy:
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần
Chọn A
Chọn B
+ Khi Wđ = 8Wt => x = ±A/3 = ±4/3 cm và T = 2s.
+ t1 = 1/6s => x1 = 0cm; t2 = 13/3 s => x2 = -2cm.
+ Ta thấy cứ 1T vật đi qua 2 vị trí x = ±4/3 cm tất cả 4 lần.
=> Sau 2T vật đi qua 8 lần.
Khi đó, vật ở vị trí x1 = 0cm (VTCB) đi tiếp lượng T/12 đến x2 = -2cm qua vị trí x = -4/3 cm một lần nữa. Ta có hình ảnh minh họa hình trên.
=> Tổng cộng vật đi qua vị trí động năng bằng 8 lần thế năng 9 lần.
Đối với những bài tìm quãng đường trong khoảng từ t1 đến t2 thì bạn lấy t2-t1 rồi phân tích chúng ra thành \(\left[{}\begin{matrix}t_2-t_1=n.\dfrac{T}{2}+t'\\t_2-t_1=n.T+t''\end{matrix}\right.\) để dễ dàng tính. Tuyệt đối ko được phân tích thành T/4 hay T/3; T/6;T/v.v. bởi nó ko luôn đúng trong các trường hợp, nếu bạn cần mình sẽ lấy ví dụ cụ thể. Giờ mình sẽ áp dụng vô bài của bạn
\(t_2-t_1=\dfrac{17}{3}-2=\dfrac{11}{3}\left(s\right)=3+\dfrac{2}{3}\)
\(T=\dfrac{2\pi}{\pi}=2s\Rightarrow t_2-t_1=3.\dfrac{T}{2}+\dfrac{2}{3}\)
Trong 3T/2 vật đi được quãng đường là: \(S_1=6A=30\left(cm\right)\)
Tại thời điểm t1=2s, lúc này vật đã quay được:\(\varphi=2\pi\left(rad\right)\) nghĩa là quay về vị trí ban đầu
Trong 2/3 s vật quay được góc: \(\varphi=\dfrac{2}{3}\pi\left(rad\right)\)
Sử dụng đường tròn lượng giác, vật ở vị trí có pha là 2pi/3, quay được góc 2pi/3 thì lúc này vật có li độ là: \(x=-2,5\left(cm\right)\)
Nghĩa là vật đi từ vị trí có li độ x1=-2,5 theo chiều âm đến vị trí có li độ x2=-2,5 theo chiều dương, vậy quãng đường vật đi được là: \(S_2=\dfrac{A}{2}+\dfrac{A}{2}=A=5\left(cm\right)\)
Vậy tổng quãng đường vật đi được là: \(S=S_1+S_2=35\left(cm\right)\)
Chọn D
+ Lúc t = 0: xo = 0 và vo > 0 => để đi được s= 3 cm => đi đến x = 3 = A/2 => t1 = T/12 = 0,5 => T = 6 (s).
+ t2 = 20,5 (s) = 3T + 5T/12=> s = 3.4A + Δs (Δs là quãng đường đi thêm trong 5T/12).
+ Vì vật xuất phát ở xo = 0 và vo > 0 nên tách => Δs = A + A/2 = 1,5A.
+ Vậy, tổng quãng đường trong thời gian t2 là: s = 3/4A + 1,5A = 81 (cm).
Chọn A
Khoảng cách giữa hai vật theo phương Ox là:
Theo bài ra ta có d ≥ 2√3
Trong khoảng t1 = 1/24 s đến t2 = 1/3s = t1 + T/2 +T/12, d có độ lớn không nhỏ hơn 2√3 trong khoảng thời gian là:
∆t = T/12 + 2. T/12 = 1/8s.
Chọn C
+ Chu kỳ:
+ Thời gian đi: t2 -t1 = 6- 1/10= 5,9 (s)
φ1 = 5πt1 - 3π/4 = -π/4
+ Ta có:
hay
+ Quãng đường đi được: S = 14.4A + ∆S
+Sau 14T kể từ thời điểm t1 vật trở lại vị trí cũ, và đi thêm 1 đoạn ∆S ứng với vật chuyển động tròn quay thêm góc ∆φ = 0,75.360o = 270o
+Quan sát hình vẽ ta tính được quãng đường đi trong 14T+ 0,75T là: S = 14.4A + 2A + 2.(A – A/ 2 ) = 331,4 cm
tại sao cộng thêm 2.(A – A/ 2 ) trong quãng đường vậy ạ??