Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt : 7A = 7k ; 7B = 8k ; 7C = 9k
=> 7C - 7B = 9k - 8k = 2
=> k = 2
Ta có : 7A = 7.2 = 14 (hs)
7B = 8.2 = 16 (hs)
7C = 9.2 = 18 (hs)
Vậy ...
Gọi số h/s giỏi của 3 lớp 7A, 7B, 7C là a, b, c (học sinh; a, b, c \(\in\)N*)
Vì số h/s giỏi của 3 lớp 7A, 7B, 7C tỉ lệ với các số 7, 8, 9 nên \(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\)
Vì số h/s giỏi của lớp 7C ... 2 học sinh nên c - b = 2
Áp dụng tính chất DTSBN:
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}=\frac{c-b}{9-8}=\frac{2}{1}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{7}=2\Rightarrow a=2.7=14\\\frac{b}{8}=2\Rightarrow b=2.8=16\\\frac{c}{9}=2\Rightarrow c=2.9=18\end{cases}}\)(Thỏa mãn điều kiện)
Vậy số h/s giỏi của 3 lớp 7A, 7B, 7C lần lượt là 14, 16, 18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{16}=\dfrac{b}{18}=\dfrac{c}{17}=\dfrac{a+b+c}{16+18+17}=1\)
Do đó: a=16; b=18; c=17
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{12}{4}=3\)
Do đó: a=9; b=15; c=21
Gọi số học sinh của 3 lớp lần lượt là : a,b,c
Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7};c-a=12\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{12}{4}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=9\\b=15\\c=21\end{matrix}\right.\)
Gọi số học sinh đạt hsg của 3 lớp lần lượt là x , y , z ta có:
\(\frac{x}{5}\)= \(\frac{y}{4}\) (vì x tỉ lệ với 5 còn y tỉ lệ với 4)
\(\frac{y}{3}\)=\(\frac{z}{5}\)(vì y tỉ lệ với 3 còn z tỉ lệ với 5)
và giả thiết bài toán là x+y+z = 47
Nhân chéo lại ta được => \(\hept{\begin{cases}4x=5y\\5y=3z\\x+y+z=47\end{cases}}\)
giải hệ ta được x=15 ; y=12; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{12}=\dfrac{b}{10}=\dfrac{c}{8}=\dfrac{b-c}{10-8}=2\)
Do đó: a=24; b=20; c=16
4.3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{180}{10}=18\)
Do đó: a=36; b=54; c=90