Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a, b, c là độ dài 3 cạnh của tam giác
S là diện tích tam giác
x là độ dài đường cao thứ 3
Ta có: S=\(\frac{1}{2}.3^2.a=\frac{1}{2}.4^3.b=\frac{1}{2}.x.c\)
=> \(\hept{\begin{cases}a=\frac{2S}{9}\\b=\frac{2S}{64}\\c=\frac{2S}{x}\end{cases}}\)
Mà theo bất đặng thức tam giác ta có:
a-b<c<a+b\(\Rightarrow\frac{2S}{9}-\frac{2S}{64}< \frac{2S}{x}< \frac{2S}{9}+\frac{2S}{64}\)=> \(\frac{1}{9}-\frac{1}{64}< \frac{1}{x}< \frac{1}{9}+\frac{1}{64}\Rightarrow\frac{55}{576}< \frac{1}{x}< \frac{73}{576}\)
<=> 7,89<x<10,47
Vì x có độ dài là lập phương của một số tự nhiên
=> x=8
Gọi độ dài các cạnh của tam giác ABC là x,y,z;đường cao là ha, hb, hc
Đặt ha=4; hb=12; hc=c
Ta có: \(\frac{ha.x}{2}=\frac{hb.y}{3}=\frac{hc.z}{2}=S=>x=\frac{2S}{ha};y=\frac{2S}{hb};z=\frac{2S}{hc}\)
Ta lại có: x+y>z ( bất đẳng thức tam giác)
\(\frac{2S}{ha}+\frac{2S}{hb}>\frac{2S}{hc}=>\frac{1}{ha}+\frac{1}{hb}>\frac{1}{hc}=>\frac{1}{4}+\frac{1}{12}>\frac{1}{a}=>\frac{1}{3}>a=>a< 3\)
y+z>x=> \(\frac{1}{hb}+\frac{1}{hc}>\frac{1}{ha}=>\frac{1}{12}+\frac{1}{a}>\frac{1}{4}=>\frac{1}{a}>\frac{1}{6}=>6>a\)