Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nghe như lý ấy nhờ @@
diện tích mặt đyas bình là : \(S=6^2\pi=36\pi\left(cm^2\right)\)
=> thể tích viên bi : \(V=S.h=36\pi.1=36\pi\left(cm^3\right)\)
\(\Leftrightarrow\dfrac{4}{3}\pi r^3=36\pi\Leftrightarrow r=\sqrt[3]{27}=3\left(cm\right)\)
Một quả bong tennis có dạng hình cầu, người ta đo được chu vi của dường tròn bao quanh quả bóng là 20,41cm. Vậy một đựng bóng tennis cao 19,5cm có thể chứa nhiều nhất bao nhiêu quả bóng ten-nít? lớp 5 help tui
cho mình hỏi chỗ v1 sao lại là 5 . \(\dfrac{4}{3}\pi R^3\) vậy ạ
Thể tích 10 viên đất là:
10*2^3=80cm3
Diện tích đáy cốc là: pi*R^2=200,96cm2
Mực nước dâng lên:
80/200,96=0,4(cm)
Diện tích đáy của cái cốc là: \(\pi.4^2=16\pi\left(cm^2\right)\)
Thể tích của \(3\)viên bi là: \(3.\frac{4}{3}\pi.1^3=4\pi\left(cm^3\right)\)
Mực nước cao lên số cen-ti-mét là: \(\frac{4\pi}{16\pi}=0,25\left(cm\right)\)
Nước dâng cao cách miệng cốc: \(12-8-0,25=3,75\left(cm\right)\)
Áp dụng BĐT sau:\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) ( dùng BĐT Bunhiacopski mà chứng minh :D )
Ta có:\(\frac{a+b}{a^2+b^2}=\frac{41}{9}\Rightarrow\frac{a^2+b^2}{a+b}=\frac{41}{9}\)
\(\Rightarrow\frac{82}{9}=\frac{2\left(a^2+b^2\right)}{a+b}\ge\frac{\left(a+b\right)^2}{a+b}=a+b\)
\(\Rightarrow a+b\le9\)
Mặt khác:\(41\left(a+b\right)=9\left(a^2+b^2\right);\left(41;9\right)=1\Rightarrow a+b⋮9\Rightarrow a+b=9\)
\(\Rightarrow a^2+b^2=41\)
Ta có hệ:\(\hept{\begin{cases}a+b=9\\a^2+b^2=41\end{cases}}\) giải cái hệ này là ra a,b nha < 3