K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Chọn hệ trục tọa độ Oxy với gốc tọa độ tại tâm đáy nhà vòm, trục tung thẳng đứng

Nhà vòm có dạng elip nên có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)   (với a,b>0)

Ta có chiều cao 8 m nên \(OA = b = 8\), chiều rộng của vòm là 20 m, suy ra \(BC = 2a = 20 \Rightarrow a = 10\).

Suy ra, phương trình miêu tả hình dáng nhà vòm là \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)

b) Điểm đó cách chân tưởng 5 m tương ứng cách tâm 5 m (vì từ tâm vòm đến tưởng là 10 m)

Thay \(x = 5\) vào phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\), ta tìm được \(y = 4\sqrt 3 \)

Vậy khoảng cách phương thẳng đứng từ một điểm cách chân tường 5 m đến nóc nhà vòm là \(4\sqrt 3\) m

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Gọi khoảng cách từ tâm đối xứng đến đáy tháp là z

Suy ra khoảng cách từ tâm đối xứng đến nóc tháp là \(\frac{2}{3}z\)

Ta có \(z + \frac{2}{3}z = 150 \Rightarrow z = 90\)

Thay \(y = 90\) vào phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) ta tìm được \(x = 4\sqrt {274} \)

Thay \(y = 60\) vào phương trình \(\frac{{{x^2}}}{{{{28}^2}}} - \frac{{{y^2}}}{{{{42}^2}}} = 1\) ta tìm được \(x = 4\sqrt {149} \)

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là \(4\sqrt {149} \) m và \(4\sqrt {274} \)m

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Gọi khoảng cách từ tâm đối xứng đến đỉnh tháp là z

Suy ra khoảng cách từ tâm đối xứng đến đáy tháp là 2z

Ta có \(z + 2z = 120 \Rightarrow z = 40\)

Thay \(y = 40\) vào phương trình \(\frac{{{x^2}}}{{{{27}^2}}} - \frac{{{y^2}}}{{{{40}^2}}} = 1\) ta tìm được \(x = 27\sqrt 2 \)

Thay \(y = 80\) vào phương trình \(\frac{{{x^2}}}{{{{27}^2}}} - \frac{{{y^2}}}{{{{40}^2}}} = 1\) ta tìm được \(x = 27\sqrt 5 \)

Vậy bán kính đường tròn nóc và bán kính đường tròn đáy của tháp lần lượt là \(27\sqrt 2 \) và \(27\sqrt 5 \)

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

75 cm trên bản vẽ ứng với 2,5 đơn vị trên mặt phẳng tọa độ.

Gọi M là điểm trên vòm ô thoáng, có hoành độ 2,5 và tung độ là h.

M thuộc elip nên \(\frac{{2,{5^2}}}{{16}} + \frac{{{h^2}}}{4} = 1\)

\(\Leftrightarrow h = \sqrt {4.\left( {1 - \frac{{2,{5^2}}}{{16}}} \right)}  = \frac{{\sqrt {39} }}{4} \approx 1,56\)

Vậy độ cao h trên thực tế là: \(h = 1,56.30 = 46,8\) cm

8 tháng 2 2019

a) (E): Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10 có a = 10; b = 6 ⇒ c2 = a2 – b2 = 64 ⇒ c = 8.

+ Tọa độ các đỉnh của elip là: A1(-10; 0); A2(10; 0); B1(0; -6); B2(0; 6)

+ Tọa độ hai tiêu điểm của elip: F1(-8; 0) và F2(8; 0)

+ Vẽ elip:

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Ta có: M ∈ (E) ⇒ MF1 + MF2 = 2a = 20 (1)

MN // Oy ⇒ MN ⊥ F1F2 ⇒ MF12 – MF22 = F1F22 = (2c)2 = 162

⇒ (MF1 + MF2).(MF1 – MF2) = 162

⇒ MF1 – MF2 = 12,8 (Vì MF1 + MF2 = 20) (2).

Từ (1) và (2) ta có hệ phương trình

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

Vậy MN = 2.MF2 = 7,2.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có: Chiều cao và chiều rộng của đường hầm là 4m, 10m nên ta có: \(a = 5,b = 4\)

Nên phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\)

Nhập phương trình elip theo cú pháp x^2/25 + y^2/16 = 1 {y>=0} vào vùng nhập lệnh ta có hình vẽ mô phỏng đường hầm dưới đây

Vậy phương trình mô phỏng đường hầm là \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) với \(y \ge 0\)

Và có hình mô phỏng thực tế như hình trên

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học