Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Giả sử bác An gửi số tiền tối thiểu hàng tháng là T (đồng). Đặt r = 0,45%.
Hết tháng thứ nhất bác An nhận được số tiền cả gốc và lãi là
T 1 = T + T . r = T . 1 + r .
Hết tháng thứ hai bác An nhận được số tiền cả gốc và lãi là
T 2 = T . 2 + r + T . 2 + r . r = T . r + 1 2 + r + 1 .
Bằng phương pháp quy nạp toán học, ta chứng minh được rằng sau n tháng gửi tiết kiệm thì bác An nhận được số tiền cả gốc và lãi là
T n = T 1 + r n + 1 + r n − 1 + ... + 1 + r .
Dễ dàng tính được T n = T r . 1 + r . 1 + r n − 1 .
Suy ra số tiền lãi sau n tháng gửi tiết kiệm là
L n = T n − T n = T r . 1 + r . 1 + r n − 1 − T n .
Theo giả thiết, ta có n = 36 , L 36 ≥ 30 000 000. Suy ra T ≥ 9 493 000.
Phân tích phương án nhiễu.
Phương án A: Sai do HS tính chỉ gửi 35 tháng.
Phương án B: Sai do HS sử dụng công thức của bài toán tính lãi kép và hiểu đề bài yêu cầu số tiền thu được sau 3 năm đủ để mua xe máy có trị giá 30 triệu đồng nên tìm được T = 25 523 000.
Phương án C: Sai do HS giải đúng như trên nhưng lại làm tròn T = 9 492 000.
Chọn D.
Gọi số tiền ít nhất mà thầy giáo cần dành ra mỗi tháng để gửi tiết kiệm là x (đồng).
Số tiền tiết kiệm gửi vào ngân hàng sau 60 tháng là
Theo bài ta có:
(đồng)
Đáp án C
Phương pháp:
Công thức lãi kép, không kỳ hạn: An = M(1 + r%)n
Với: An là số tiền nhận được sau tháng thứ n,
M là số tiền gửi ban đầu,
n là thời gian gửi tiền (tháng),
r là lãi suất định kì (%).
Cách giải:
Số tiền ông A rút ra sau 5 năm đầu là: 100.1 + 8%5 ≈ 146,933 (triệu đồng)
Số tiền ông A tiếp tục gửi là: 146,933:2 ≈ 73,466 (triệu đồng)
Số tiền ông A nhận được sau 5 năm còn lại là: 73,466.1 + 8%5 ≈ 107,946 (triệu đồng)
Sau 10 năm ông A đã thu được số tiền lãi là: 107,946 - 73,466 + 146,933-100 ≈ 81,412 (triệu đồng)
-Bỏ 8 đồng tiền vàng vào hai bên cân,mỗi bên 4 đồng,nếu cân thăng bằng,vậy đồng tiền còn lại là giả.
-Nếu 1 trong 2 bên cân nặng hơn bên còn lại,bỏ 4 đồng bên cân nặng xuống,lấy 2 đồng bên cân nhẹ bỏ qua để mỗi cân có 2 đồng.
-Bên nào nhẹ hơn thì bỏ bên còn lại xuống,lấy 1 đồng bên cân nhẹ bỏ vào cân kia,bên nào nhẹ hơn thì đó là đồng tiền vàng giả.
Để biết được đâu là đồng tiền giả chúng ta chỉ cần thực hiện 2 lần cân. Cụ thể như sau:
Lần cân thứ nhất: Các bạn đem 9 đồng tiền chia làm 3 phần mỗi phần sẽ bao gồm 3 đồng tiền vàng. Sau đó chúng ta đem 2 phần bất kỳ lên cân. Phần nào nhẹ hơn chứng tỏ phần đó có chứa đồng vàng giải. Trong trường hợp 2 phần tiền vàng này có trọng lượng bằng nhau thì phần còn lại (phần không được cân) là phần có chứa đồng vàng giả.Lần cân thứ 2: Ở lần cân thứ nhất chúng ta đã xác nhận được phần có chứa 1 đồng tiền giả. Tương tự như trên chúng ta thực hiện cân 2 đồng tiền bất kỳ nếu đồng vàng nào nhẹ hơn thì đồng đó là tiền giả. Trong trường hợp 2 đồng vàng được cân bằng nhau thì đồng tiền không cân là giả.