Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo:
a) u2 = u1 + 500 = 8000 + 500 = 8500
u3 = u2 + 500 = 8500 + 500 = 9000
v2 = v1 + v1. 0,07 – v1 (1 + 0,07) = v1.1,07 = 6000.1,07 = 6420
v3 = v2 + v2.0,07 = v2(1 + 0,07) = v2.1,07 = 6420.1,07 = 6869,4
b) Theo giả thiết của bài toán , ta có:
u1 = 8000 và un + 1 = un + 500 với mọi n ≥ 1 (1)
v1 = 6000 và vn + 1 = vn + vn.0,07 = vn(1 + 0,07) = vn.1,07 với mọi n ≥ 1 (2)
Từ (1) suy ra (un)là một cấp số cộng với công sai d=500 và số hạng đầu u1 = 8000
Số hạng tổng quát: un = 8000 + (n – 1).500 = 7500 + 500nTừ (2) suy ra (vn) là một cấp số nhân với công bội q=1,07 và số hạng đầu v1 = 6000
Số hạng tổng quát: vn = 6000.(1,07)n - 1
c) Kí hiệu A20 và B20 tương ứng là số tiền công( tính theo đơn vị đồng) cần trả theo cách tính giá của cơ sở B. Từ kết quả phần b) ta có:
Từ đó, nếu cần khoan giếng sâu 20m thì nên thue cơ sở B.
d) Kí hiệu A25 và B25 tương ứng là số tiền công ( tính theo đơn vị đồng) cần trả theo cách tính giá của cơ sở A và theo cách tính giá của cơ sở B.
Bằng cách tương tự như ở phần c) ta tình được A25 = 350000 và B25 = 37494,22629...
Do đó, nếu cần khoan giếng sâu 25m thì nên thuê cơ sở A.
Gọi số ngày anh Hải cần phải tiết kiệm là x
Ngày 1 anh hải tiết kiệm được 5000(đồng)
Ngày 2 anh Hải tiết kiệm được 5000+2000(đồng)
Ngày 3 anh Hải tiết kiệm được 5000+2*2000(đồng)
...
Ngày x anh Hải tiết kiệm được 5000+(x-1)*2000(đồng)
Theo đề, ta có:
\(5000+5000+2000+5000+2\cdot2000+...+5000+\left(x-1\right)\cdot2000>=3840000\)
=>\(x\cdot5000+2000\left(1+2+...+x-1\right)>=3840000\)
=>\(5000x+2000\cdot\dfrac{x\left(x-1\right)}{2}>=3840000\)
=>\(5x+\dfrac{2x\left(x-1\right)}{2}>=3840\)
=>\(5x+x^2-x>=3840\)
=>\(x^2+4x-3840>=0\)
=>(x-60)(x+64)>=0
=>\(\left[{}\begin{matrix}x>=60\\x< =-64\left(loại\right)\end{matrix}\right.\)
Vậy; anh hải cần để dành 60 ngày để đủ số tiền mua đôi giày
a) Công thức tính giá trị của ô tô:
- Sau 1 năm: \(800 - 800.4\% = 768\) (triệu đồng)
- Sau 2 năm: \(768 - 768.4\% = 737,28\) (triệu đồng)
b) Công thức tính giá trị của ô tô sau n năm sử dụng: \({S_n} = 800{\left( {1 - 0,04} \right)^n}\)
c) Sau 10 năm, giá trị của ô tô ước tính còn: \({S_{10}} = 800{\left( {1 - 0,04} \right)^{10}} \approx 531,87\) (triệu đồng)
Gọi unn là số tiền sau mỗi tháng ông An còn nợ ngân hàng.
Lãi suất mỗi tháng là 1% .
Ta có:
u1 = 1 000 000 000 đồng.
u2 = u1 + u1.1% - a = u1(1 + 1%) – a (đồng)
u3 = u1(1 + 1%) – a + [u1(1 + 1%) – a].1% – a = u1(1 + 1%)2 – a(1 + 1%) – a
...
un = u1(1 + 1%)n-1 – a(1 + 1%)n-2 – a(1 + 1%)n-3 – a(1 + 1%)n-4 – ... – a.
Ta thấy dãy a(1 + 1%)n-1; a(1 + 1%)n-3; a(1 + 1%)n-4; ...; a lập thành một cấp số nhân với số hạng đầu a1 = a và công bội q = 1 + 1% = 99% có tổng n – 2 số hạng đầu là:
\({S_{n - 2}} = \frac{{a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]}}{{1 - 99\% }} = 100a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]\).
Suy ra un = u1(1 + 1%)n-1 – 100a[1 – (99%)n-2].
Vì sau 2 năm = 24 tháng thì ông An trả xong số tiền nên n = 24 và u24 = 0. Do đó ta có:
u24 = u1(1 + 1%)23 – 100a[1 – (99%)22] = 0
⇔ 1 000 000 000.(99%) – 100a[1 – (99%)22] = 0
⇔ a = 40 006 888,25
Vậy mỗi tháng ông An phải trả 40 006 888,25 đồng.
Ta có:
+ Công thức tính lương của phương án thứ nhất: \({S_n} = 120 + \left( {n - 1} \right).18\)
+ Công thức tính lương của phương án thứ hai: \({Q_n} = 24 + \left( {n - 1} \right).1,8\)
a) Sau ba năm:
- Phương án thứ nhất có: \({S_3} = 120 + \left( {3 - 1} \right).18 = 156\) (triệu đồng)
- Phương án thứ hai có: \({Q_{12}} = 24 + (12 - 1).1,8 = 43,8\) (triệu đồng)
Nếu kí hợp đồng lao động 3 năm, em sẽ chọn phương án thứ nhất
b) Sau 10 năm:
- Phương án thứ nhất có: \({S_{10}} = 120 + \left( {10 - 1} \right).18 = 282\) (triệu đồng)
- Phương án thứ hai có: \({Q_{40}} = 24 + (40 - 1).1,8 = 94,2\) (triệu đồng)
Nếu kí hợp đồng lao động 10 năm, em sẽ chọn phương án thứ nhất.
Chọn C.
- Ta có: