Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc dự định là x ( km/h )
Thời gian dự định là 7 ( h )
Quãng đường là xy ( km)
*) Mỗi giờ chậm hơn 10km => ( x - 10 ) km / h
=> t = \(\frac{xy}{\left(x-10\right)}=y-\frac{4}{5}\)
*) Mỗi giờ chậm hơn 20 km
t=\(\frac{xy}{x-20}=y-2\)
<=>\(\hept{\begin{cases}xy=\left(x-20\right)\left(y-2\right)\\5xy=\left(5y-4\right)\left(x-10\right)\end{cases}}\)
<=> \(\hept{\begin{cases}xy=xy-2x-20y+40\\5xy=5xy-50y-4x+40\end{cases}}\)
<=> \(\hept{\begin{cases}2x+20y=40\\50y+4x=40\end{cases}}\)
<=> \(\hept{\begin{cases}x=60\\y=4\end{cases}}\)
Đáp án:
Vận tốc dự định của ô tô là 60km/h, quãng đường AB là 240km
Giải thích các bước giải:
Đổi : $48'=\dfrac{4}{5}h
Gọi vận tốc dự định của ô tô đi từ A đếnB là x (km/h) (x>0)
Thời gian dự định của xe đi từ A đến B là y (h) (y>0)
Nếu xe chạy mỗi giờ chậm hơn 10km thì đến B chậm hơn 4545 h khi đó:
Vận tốc của xe là x-10 (km/h)
Thời gian đi của xe là y+4545 (h)
⇒⇒ Độ dài quãng đường là (x−10)(y+45)(x−10)(y+45) (km)
⇒⇒ Ta có pt: (x−10)(y+45)=xy(x−10)(y+45)=xy
↔45x−10y=8⇔4x−50y=40↔45x−10y=8⇔4x−50y=40 (1)
Nếu xe mỗi giờ chạy chậm 20 km thì đến chậm hơn 2h khi đó:
Vận tốc của xe là x-20 (km/h)
Thời gian đi của xe là y+2 (h)
⇒⇒ Độ dài quãng đường là (x-20)(y+2) (km)
⇒⇒ Ta có pt: (x−20)(y+2)=xy(x−20)(y+2)=xy
⇔2x−20y=40⇔x−10y=20⇔2x−20y=40⇔x−10y=20 (2)
Ta có hệ phương trình (1) và (2)
(2) ⇒x=20+10y⇒x=20+10y thay vào (1) ta được:
4(20+10y)−50y=40⇒y=4⇒x=60⇒4(20+10y)−50y=40⇒y=4⇒x=60⇒ quãng đường AB là 4.60=240km4.60=240km
Vậy vận tốc dự định của ô tô là 60km/h và quãng đường AB là 240km.
Gọi vận tốc dự định đi hết quãng đường là x(km/h) và thời gian dự định là y (giờ0 với x;y>0
Độ dài quãng đường AB: \(xy\) (km)
Do người đó tăng vận tốc thêm 25km/h thì đến sớm hơn 1 giờ nên:
\(\left(x+25\right)\left(y-1\right)=xy\)
Do người đó giảm vận tốc 20km/h thì đến muộn hơn 2 giờ nên:
\(\left(x-20\right)\left(y+2\right)=xy\)
Ta có hệ: \(\left\{{}\begin{matrix}\left(x+25\right)\left(y-1\right)=xy\\\left(x-20\right)\left(y+2\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+25y=25\\2x-20y=40\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=50\\y=3\end{matrix}\right.\)
Quãng đường: \(50.3=150\left(km\right)\)
Bắt Hết!!!
Lệch vận tốc là 20km/h
Lệch thời gian là 3 giờ
=> Quãng đường là: S=60km
vt=60
(v-10)(t+1)=60
(v+10)(t-1)=60
Giải ra dduocj v, t
Gọi vận tốc của xe lúc đầu là x (km/h) , chiều dài quãng đường AB là y (km) (x>10,y>0)
Theo đề bài :
Xin lỗi mình còn thiếu:
Hệ hương trình : \(\hept{\begin{cases}\frac{y}{x+10}=\frac{y}{x}-3\\\frac{y}{x-10}=\frac{y}{x}+5\end{cases}}\)
Giải ra được : x = 40 (TM) , y = 600 (TM)
Vậy vận tốc lúc đầu của xe là 40 km/h
Thời gian dự định là 15 giờ
Chiều dài quãng đường là 600 km
Lời giải:
Gọi vận tốc dự định là $a$ (km/h)
Thời gian dự định: $\frac{AB}{a}$ (giờ)
Thời gian khi xe chạy nhanh hơn dự định 10km/h là: $\frac{AB}{a+10}$ (giờ)
Thời gian khi xe chạy chậm hơn dự định 10km/h là: $\frac{AB}{a-10}$ (giờ)
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{AB}{a}-\frac{AB}{a+10}=3\\ \frac{AB}{a-10}-\frac{AB}{a}=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{10AB}{a(a+10)}=3\\ \frac{10AB}{a(a-10)}=5\end{matrix}\right.\)
Chia theo vế: \(\frac{a(a-10)}{a(a+10)}=\frac{3}{5}\Leftrightarrow \frac{a-10}{a+10}=\frac{3}{5}\Leftrightarrow a=40\) (km/h)
$AB=\frac{3a(a+10)}{10}=\frac{3.40.50}{10}=600$ (km)
\(36'=\)\(\dfrac{3}{5}h\)
Gọi vận tốc dự định là \(a (km/giờ) (ĐK: a > 10)\)
Thời gian dự định là \(b (giờ) (ĐK: A > 1)\)
Theo đề , ta có hệ phương trình:
\(\left(a+10\right).\left(b-\dfrac{3}{5}\right)=ab\)
\((a + 10) . (b + 1) = ab\)
\(\Leftrightarrow10b-\dfrac{3}{5}\text{×}a=6\)
\(-10b+a=10\)
\(⇒ a = 40 km/h \)
\(⇒ b = 3 giờ \)
vận tốc dự định : \(40km/h\)
thời gian dự định : \(3h\)
quãng đường :
\(40×3=120km \)