Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi qđ AB là x(km) đk: x>0
Thời gian khi đi với vận tốc 48km/h là : x/48(km/h)
Thời gian khi đi với vận tốc 60km/h là : x/60 (km/h)
Theo bài ra ta có pt :
\(\dfrac{x}{48}\) +1 =\(\dfrac{x}{60}\) +2
giải pt ta đc giá trị x=240(km)
Gọi x là thời gian dự định ( x >2) Quãng đường S=vt
+) nếu đi với vận tốc 30km/h thì đến muộn hơn so với dự định là 2h:
30×(x+2). (1)
+) nếu đi với vận tốc 40km/h thì đến sớm hơn 1 h so với dự tính:
40×(x-1). (2)
(1) = (2) ta có :
30×(x+2) = 40×(x-1)
=> x= 10
Vậy thời gian dự tính là 10 h => s= 30×12=360 km
Gọi vận tốc của ô tô là x , thời gian dự định là y ( x(km/h), y(giờ) ; x, y > 0 )
S ban đầu = xy
Tăng vận tốc thêm 10km/h thì đến sớm hơn dự định 2 giờ
=> S = ( x + 10 )( y - 2 )
Giảm vận tộc đi 10km/h thì đến chậm hơn dự định 3 giờ
=> S = ( x - 10 )( y + 3 )
Vì quãng đường AB không đổi
=> Từ ( 1 ) và ( 2 ) ta có phương trình :
\(\hept{\begin{cases}\left(x+10\right)\left(y-2\right)=xy\\\left(x-10\right)\left(y+3\right)=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+10y-xy-20=0\\xy+3x-10y-xy-30=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2x+10y-20=0\left(3\right)\\3x-10y-30=0\left(4\right)\end{cases}}\)
Lấy ( 3 ) cộng ( 4 ) theo vế
\(\Rightarrow x-50=0\Leftrightarrow x=50\)
Thế x = 50 vào ( 3 )
\(\Rightarrow-2\cdot50+10y-20=0\)
\(\Rightarrow-120+10y=0\)
\(\Rightarrow10y=1200\Leftrightarrow y=12\)
Cả hai giá trị đều thỏa mãn điều kiện
=> ( x ; y ) = ( 50 ; 12 )
Vậy vận tốc ban đầu của ô tô = 50km/h và thời gian dự định = 12 giờ
=> Quãng đường AB dài : 50 . 12 = 600km
Trả lời:
Gọi vân tốc dự định của ô tô là:\(x\)\(\left(km/h,x>10\right)\)
thời gian dự định ô tô đi quãng đường AB là \(y\) \(\left(giờ,y>2\right)\)
Độ dài quãng đường AB là \(xy\left(km\right)\)
.Nếu tăng vận tốc thêm 10km/h thì đến B sớm hơn dự định 2 giờ
\(\Rightarrow\left(x+10\right).\left(y-2\right)=xy\)
\(\Leftrightarrow xy-2x+10y-20=xy\)
\(\Leftrightarrow-2x+10y=20\)(1)
Nếu giảm vận tốc 10km/h thì đến B chậm hơn dự định 3 giờ
\(\Rightarrow\left(x-10\right).\left(y+3\right)=xy\)
\(\Leftrightarrow xy+3x-10y-30=xy\)
\(\Leftrightarrow3x-10y=30\)(2)
Từ (1) (2) ta có: \(\hept{\begin{cases}-2x+10y=20\\3x-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\3.50-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\150-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\10y=120\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\y=12\left(TM\right)\end{cases}}\)
Vậy quãng đường AB dài: \(50\times12=600\left(km\right)\)
Gọi vận tốc dự định của ô tô là x (km/h; x > 10)
Gọi chiều dài quãng đường là a (km)
Thời gian dự định là \(\dfrac{a}{x}\) (giờ)
Vận tốc nếu tăng đi 10km/h là x + 10 (km/h)
Thời gian nếu tăng vận tốc là \(\dfrac{a}{x+10}\) (giờ)
Do nếu tăng vận tốc thì ô tô đến B sớm hơn 2 giờ => Ta có phương trình:
\(\dfrac{a}{x}-\dfrac{a}{x+10}=2\) <=> 10a - 2x2 - 20x = 0 (1)
Vận tốc nếu giảm đi 10km/h là x - 10 (km/h)
Thời gian đi khi vận tốc giảm là \(\dfrac{a}{x-10}\) (giờ)
Do nếu giảm vận tốc thì đến B chậm hơn dự định 3 giờ => Ta có phương trình:
\(\dfrac{a}{x-10}-\dfrac{a}{x}=3\) <=> 10a - 3x2 + 30x = 0 (2)
(1)(2) <=> 3x2 - 30x = 2x2 + 20x
<=> x2 - 50x = 0
<=> x (x-50) = 0
Mà x > 10
<=> x - 50 = 0 <=> x = 50 (tm)
Chiều dài quãng đường AB là \(a=\dfrac{2x^2+20x}{10}=600\left(km\right)\)
Gọi thời gian dự định \(x ( g i ờ ) ( x > 1 ; x ∈ N ∗ )\)
khi chạy với \(\text{v = 80 km/h thì đến sớm 1h }\)
\(→x−1(h)\)
\(→AB=80.(x−1)(km)\)
Khi chạy với \(v=48(km/h)t\)hì đến muộn hơn \(1h\)
\(→x+1(h)\)
\(→AB=48.(x+1)(km)\)
\(→80(x−1)=48(x+1)\)
\(→5x−5=3x+3\)
\(→2x=8\)
\(→x=4(h)\)
\(→AB=80(x−1)=80.3=240(km)\)