Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ minh họa.
Độ dài đoạn AC chính là quãng đường máy bay cần đi để đạt độ cao 250m.
Xét tam giác ABC vuông tại B có:
sin(∠CAB)=BCAC⇒AC=BCsin(∠CAB)=hsin23o=250sin23o≈640(m)sin(∠CAB)=BCAC⇒AC=BCsin(∠CAB)=hsin23o=250sin23o≈640(m)
Vậy máy bay cần bay quãng đường 640 (m) để đạt được độ cao 250 (m).
Đổi 1,5’ = 1 40 h
Sau 1,5 phút máy bay ở C
Quãng đường bay được là BC = 480. = 12km và B ^ = 25 0
Nên AC = BC. sin 25 0 = 5,1km
Vậy máy bay đạt được độ cao là 5,1km sau 1,5 phút
Đáp án cần chọn là: C
Độ cao của máy bay là cạnh góc vuông đối diện với góc 3 ° , khoảng cách từ máy bay đến sân bay là cạnh huyền
Vậy khoảng cách từ máy bay đến sân bay là:
Gọi C là góc tạo bởi đường bay vs mặt đất, AB là độ cao 3200m và B là vị trí của máy bay
Đổi: \(200km/h=\dfrac{500}{9}m/s\)
Xét tam giác ABC vuông tại A:
\(sinC=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{3200}{sin32^0}\approx6038,66\left(m\right)\)
\(t=\dfrac{S}{v}=\dfrac{6038,66}{\dfrac{500}{9}}\approx109\left(s\right)\)
Trong 2 phút, máy bay đi được: \(\frac{220.2}{60}=\frac{22}{3}\left(km\right)\)
Gọi mặt đất là AB, độ cao so với mặt đất sau 2 phút là AC, quãng đường máy bay đi được trong 2 phút là AC (theo hình vẽ)
Ta có: \(AC=BC.\sin ABC=\frac{22}{3}.\sin23^o\approx2,865\left(km\right)\)
Vậy máy bay ở độ cao 2,865 km so với mặt đất.
Đổi 1,2’ = 1 50 h
Sau 1,2 phút máy bay ở C
Quãng đường bay được là BC = 500. 1 50 = 10km và B ^ = 30 0
Nên AC = BC. sin 30 0 = 5km
Vậy máy bay đạt được độ cao là 5km sau 1,2 phút
Đáp án cần chọn là: B
Đổi 3200m = 3,2km
Để đạt đến độ cao 3,2km thì máy bay phải bay \(\dfrac{3,2}{\sin32^0}\approx6\left(km\right)\)
Vậy sau \(6:200=0,03\left(h\right)=1,8\left(giây\right)\) thì máy bay bay đc 3,2km
3200m = 3,2km
Để đạt đến độ cao 3,2km thì máy bay phải bay
Vậy sau thì máy bay bay đc 3,2km
Lời giải:
Đoạn đường máy bay phải đi là:
$2500:\sin 23^0=6398$ (mét)