Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi cạnh nhình vuông lớn nhất là a(a thuộc N)
Vì chia mảnh đất thành những khoảnh nhình vuông bằng nhau
=>52 chia hết cho a
36 chia hết cho a
a lớn nhất
=> a = ƯCLN(52,36)
Ta có
52=22*13
36=22*32
=> a=22=4
Vậy cạnh hình vuông lớn nhất là 4m
Gọi x là cạnh hình vuông lớn nhất
Theo đề bài ta có:
Để thỏa mãn đề bài:
52:x ;36:x (x là số lớn nhất)
=> x là WWCLN (52 ;36)
52=2^2 x 13
36 = 2^2 x3^3
ƯCLN (52 ;36) =2^2=4
Vậy với cách chia có độ dài là 4m là lớn nhất
Gọi độ dài cạnh các mảnh đất hình vuông là a (m).
Khi đó ta có: 112 ⋮ a; 40 chia hết cho a và a lớn nhất.
Do đó a là ƯCLN(112,40)
Tính được: a = 8.
Vậy, độ dài cạnh lớn nhất của hình vuông là 8m
\(54=3^3\cdot2;120=2^3\cdot3\cdot5\)
=>\(ƯCLN\left(54;120\right)=3\cdot2=6\)
Để có thể chia mảnh đất ấy thành các mảnh hình vuông bằng nhau thì độ dài cạnh hình vuông phải là ước chung của 120 và 54(1)
Gọi độ dài cạnh hình vuông lớn nhất có thể là x(m)
Từ (1) suy ra \(x\inƯC\left(54;120\right)\)
mà x lớn nhất
nên x=ƯCLN(54;120)=6(m)
Gọi x là hình vuông lớn nhất .
Theo đề bài ta có :
52 : x ; 36 : x (x là số lớn nhất )
\(\Rightarrow x\inƯCLN\left(52;36\right)\)
\(ƯCLN\left(52;36\right)=2^2=4\)
Vậy với cách chia có độ dài là 4 m là lớn nhất
Chúc bạn học tốt !!!
Bài giải
Gọi x là độ dài lớn nhất của cạnh hình (x \(\in\)N*)
Theo đề bài, có: 52 \(⋮\)x ; 36 \(⋮\)x và x lớn nhất
Suy ra x \(\in\)ƯCLN (52; 36)
52 = 22.13
36 = 22.32
ƯCLN (52; 36) = 22 = 4
Suy ra x = 4 (m)
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m
Với cách chia là mỗi hình vuông có cạnh 4 m
jup mk với
Gọi cạnh lớn nhất có thể chia là a ta có:
Từ đề => 52 chia hết cho a ; 36 chia hết cho a
52 = 22.13 ; 36 = 22.32
=> a = UCLN(52;36) = 22 = 4
Do đó độ dài lớn nhất của cạnh có thể chia là 4m
like nha b