Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích của mảnh vườn là: 30.20 = 600 ( m 2 )
Gọi chiều rộng của lối đi là x (0 < x < 20; m).
Sau khi làm lối đi:
Chiều rộng mảnh vườn còn lại: 20 – 2x (m)
Chiều dài mảnh vườn còn lại: 30 – 2x (m)
Vì diện tích trồng hoa bằng 84% diện tích mảnh đất nên ta có phương trình:
Vậy chiều rộng lối đi là 1m
Đáp án: A
diện tích mảnh đất còn lại:
(30 x 60) x 84 : 100 = 504 ( m2 )
diện tích lối đi:
(30 x 60) - 504 = 600-504 = 96 ( m2 )
vì lối đi có chiều rộng không đổi (túc chiều rộng hình chữ nhật không đổi)nên bề rộng lối đi là
96 : 20 = 4,8 ( m )
Đáp số : ...
Gọi chiều dài chiều rộng ban đầu là a,b
Sau khi làm lối đi thì chiều dài chiều rộng là (a -4), (b - 4)
Theo đề bài ta có
\(\hept{\begin{cases}2\left(a+b\right)=280\\\left(a-4\right)\left(b-4\right)=\:4256\end{cases}}\)
=> a = 80; b = 60
Nửa chu vi của mảnh vườn là: 280 : 2 = 140 (m )
Gọi chiều rộng mảnh vườn hình chữ nhật là x ( 0 < x \(\le\)70; m )
Chiều dài của mảnh vườn là : 140 - x (m )
Sau khi làm lối đi chiều rộng còn lại là: x - 4 (m )
Sau khi làm lối đi chiều dài còn lại là: 140 - x - 4 = 136 - x (m)
Phần diện tích để trồng trọt là: ( 136 -x ) ( x- 4 )
Theo đề bài ta có phương trình:
( 136 -x ) ( x- 4 ) = 4256
<=> x = 80 ( loại ) hoặc x = 60 ( tm)
Vậy chiều rộng là 60 m và chiều dài là 140 - 60 = 80 m.
Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\left(a+b\right)=120\\\left(b+5+\dfrac{3}{4}a\right)=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=60\\\dfrac{3}{4}a+b=55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{4}a=5\\a+b=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=40\end{matrix}\right.\)
Diện tích ban đầu la 20x40=800(m2)