K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Chọn D

Ta có:

Gọi A là biến cố lấy ra 3 sản phẩm trong đó có ít nhất một sản phẩm tốt.

=>  A ¯ là biến cố lấy ra 3 sản phẩm không có sản phẩm tốt và 

Vậy 

16 tháng 6 2019

Đáp án B

Gọi A là biến cố: “ 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt”

Khi đó là biến cố :”3 sản phẩm lấy ra không có sản phẩm nào tốt”

Ta có:

 

Suy ra  

14 tháng 1 2017

Đáp án C

n ( Ω ) = C 40 3

A : 3 sản phẩm lấy ra có ít nhất 1 sản phẩm tốt

A  : 3 sản phẩm lấy ra không có sản phẩm tốt

15 tháng 7 2019

4 tháng 9 2018

Chọn D

Số phần tử không gian mấu bằng số cách lấy ra 4 sản phẩm từ 20 sản phẩm là: C 20 4  (cách)

Cách 1: Để lấy ra 4 sản phẩm có sản phẩm lỗi ta chia các trường hợp:

TH1: Lấy được 3 sản phẩm tốt và 1 sản phẩm lỗi, ta có:  C 18 3 . C 2 1  (cách)

TH2: Lấy được 2 sản phẩm tốt và 2 sản phẩm lỗi, ta có:   C 18 2 . C 2 2  (cách)

Vậy xác suất cần tìm là: 

Cách 2: Xét biến cố đối:

Số cách lấy ra 4 sản phẩm không có sản phẩm lỗi C 18 4 (cách)

Vậy xác suất cần tìm là: 

3 tháng 12 2021

Gọi A là xác suất lấy được 3 sản phẩm tốt.

\(\Rightarrow P\left(A\right)=\dfrac{C^3_6.C^1_6}{C^4_{12}}=\dfrac{8}{33}\)

24 tháng 8 2023

Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^6_{20}\)

a) Gọi A là biến cố: "Tất cả đều là chính phẩm."

Ta thấy \(\left|A\right|=C^6_{15}\)

\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{ \left|\Omega\right|}=\dfrac{C^6_{15}}{C^6_{20}}=\dfrac{1001}{7752}\)

b) Gọi B là biến cố: "Tất cả đều là phế phẩm."

 Rõ ràng \(\left|B\right|=0\) (vì chỉ có 5 phế phẩm nhưng ta chọn tới 6 sản phẩm nên không thể có chuyện cả 6 sản phẩm được chọn đều là phế phẩm) \(\Rightarrow P\left(B\right)=0\)

c) Gọi C là biến cố: "Có ít nhất 3 chính phẩm."

\(P_i\) là biến cố: "Có đúng \(i\) chính phẩm." \(\left(3\le i\le6\right)\)

Do \(P_i\) đôi một rời nhau và \(C=\cup^6_{i=3}P_i\) nên \(\left|C\right|=\sum\limits^6_{i=3}\left|P_i\right|\)

Ta thấy \(\left|P_i\right|=C^i_{15}.C^{6-i}_5\) \(\Rightarrow\sum\limits^6_{i=3}\left|P_i\right|=\sum\limits^6_{i=3}C^i_{15}.C^{6-i}_5=38220\)

hay \(\left|C\right|=38220\)

Từ đó \(P\left(C\right)=\dfrac{\left|C\right|}{\left|\Omega\right|}=\dfrac{38220}{C^6_{20}}=\dfrac{637}{646}\)

 

2 tháng 8 2018

Đáp án C

Phương pháp giải:

Chia trường hợp của biến cố, áp dụng các quy tắc đếm cơ bản tìm số phần tử của biến cố

Lời giải:

Lấy 6 sản phẩm từ 20 sản phẩm lô hàng có C 20 6 = 38760 cách  ⇒ n ( Ω )   =   38760

Gọi X là biến cố 6 sản phẩm lấy ra có không quá 1 phế phẩm. Khi đó, ta xét các trường hợp sau:

TH1. 6 sản phẩm lấy ra 0 có phế phẩm  nào => có C 16 6 = 8008 cách

TH2. 6 sản phẩm lấy ra có duy nhất 1 phế phẩm => có C 16 5 . C 4 1   =   17472 cách

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8008 + 17472 = 25480 

Vậy xác suất cần tính là