K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).

26 tháng 8 2018

Chọn D

Chọn ngẫu nhiên một quả trong 30 quả có 30 cách. Vậy n ( Ω ) = 30.

Gọi A là biến cố: “lấy được quả cầu màu xanh”.

Ta có n(A) = 20 => P(A) = 2 3

Gọi B là biến cố: “lấy được quả cầu ghi số lẻ”.

Ta có n(B) = 15 => P(B) = 1 2 .

Số quả cầu vừa màu xanh vừa ghi số lẻ: 10 (quả).

Xác suất để lấy được quả cầu vừa màu xanh vừa ghi số lẻ:

Xác suất để lấy được quả cầu màu xanh hay ghi số lẻ:


18 tháng 5 2017

Trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả mầu đỏ, 5 quả mầu đỏ ghi số chẵn, 25 quả mầu xanh hoặc ghi số lẻ. Vậy theo định nghĩa :

a) \(P\left(A\right)=\dfrac{15}{30}=\dfrac{1}{2}\)

b) \(P\left(B\right)=\dfrac{10}{30}=\dfrac{1}{3}\)

c) \(P\left(C\right)=\dfrac{5}{30}=\dfrac{1}{6}\)

d) \(P\left(D\right)=\dfrac{25}{30}=\dfrac{5}{6}\)

NV
18 tháng 11 2019

Số quả xanh mang số lẻ: 8 quả

\(\Rightarrow\) số quả cầu có màu đỏ hoặc mang số lẻ: \(20+8=28\)

Xác suất: \(P=\frac{28}{35}=\frac{4}{5}\)

NV
16 tháng 11 2021

Không gian mẫu: \(C_{15}^3=455\)

Số cách chọn 3 quả sao cho vừa khác màu vừa khác số:

\(4.4.4=64\)

Xác suất: \(P=\dfrac{64}{455}\)

16 tháng 11 2021

g

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

-         Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega  \right) = C_9^2 = 36\)

-         Số cách lấy 2 quả khác màu là:

+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)

+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)

+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)

=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách

-         Số cách lấy 2 quả khác màu trùng số:

+ 2 quả cùng là số 1: \(C_3^2 = 3\)

+ 2 quả cùng là số 2: \(C_3^2 = 3\)

+ 2 quả cùng là số 3: \(C_2^2 = 1\)

=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách

=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)

=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)

18 tháng 5 2017

Kí hiệu A là biến cố : "Quả lấy ra mầu đỏ"

B là biến cố : "Quả lấy ra ghi số chẵn"

a) Không gian mẫu \(\Omega=\left\{1,2,...,10\right\}\)

\(A=\left\{1,2,3,4,5,6\right\}\)

Từ đó : \(P\left(A\right)=\dfrac{6}{10}=\dfrac{3}{5}\)

Tiếp theo, \(B=\left\{2;4;6;8;10\right\}\)\(A\cap B=\left\{2;4;6\right\}\)

Do đó : \(P\left(B\right)=\dfrac{5}{10}=\dfrac{1}{2};P\left(AB\right)=\dfrac{3}{10}\)

Ta thấy \(P\left(AB\right)=\dfrac{3}{10}=\dfrac{3}{5}.\dfrac{1}{2}=P\left(A\right)P\left(B\right)\)

Vậy A và B độc lập.

14 tháng 9 2019

Kí hiệu A là biến cố: "Quả lấy ra màu đỏ";

B là biến cố: "Quả lấy ra ghi số chẵn".

Không gian mẫu

Ω = {1, 2, ..., 10};

A = {1, 2, 3, 4, 5, 6}.

Từ đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tiếp theo: B = {2, 4, 6, 8, 10} và A ∩ B = {2, 4, 6}.

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta thấy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy A và B độc lập.