Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F H O
gọi E , F lần lượt là t/đ của AD và BC
xét hthang ABCD có: E và F lần lượt là t/đ của AD và Bc ( cách vẽ) => EF là đg trung bình của hthang ABCD => EF= 1/2 . ( AB+DC)
Mà AH = 1/2.(AB+DC) (gt) nên EF=AH
xét tg ADH vuông tại H có: E là t/đ của cạnh huyền AD (cv)=> AE=DE=HE. Mà FC=ED (cùng =1/2 cạnh bên)
=> EH=FC. Mặt khác : EF//HC( vì EF//DC ; H thộc Dc) nên tg EFCH là hbh => EF=HC
Mà EF=AH (cmt) nên HC=AH
Xét t AHC vuông tại H có: HC=AH (cmt) => tg AHC vuông cân tai H => ^ ACH =45 hay ^ACD=45 (*)
ta c/m đc : tg ADC =tg BCD (c.g.c) => ^ACD= ^BDC (**)
Từ (*),(**) => ^ACD=^BDC=45
gọi gđ của AC và BD là O
xét tg ODC có: ^OCD+^ODC=45+45=90 (vì ^ACD=^BDC=45)
=> tg ODC vuông tại O => AC \(⊥\) BD (đpcm)
Võ Thị Quỳnh Trang làm đúng rùi đấy k mik lên điểm nha anh em
gọi E , F lần lượt là t/đ của AD và BC
xét hthang ABCD có: E và F lần lượt là t/đ của AD và Bc ( cách vẽ) => EF là đg trung bình của hthang ABCD => EF= 1/2 . ( AB+DC)
Mà AH = 1/2.(AB+DC) (gt) nên EF=AH
xét tg ADH vuông tại H có: E là t/đ của cạnh huyền AD (cv)=> AE=DE=HE. Mà FC=ED (cùng =1/2 cạnh bên)
=> EH=FC. Mặt khác : EF//HC( vì EF//DC ; H thộc Dc) nên tg EFCH là hbh => EF=HC
Mà EF=AH (cmt) nên HC=AH
Xét t AHC vuông tại H có: HC=AH (cmt) => tg AHC vuông cân tai H => ^ ACH =45 hay ^ACD=45 (*)
ta c/m đc : tg ADC =tg BCD (c.g.c) => ^ACD= ^BDC (**)
Từ (*),(**) => ^ACD=^BDC=45
gọi gđ của AC và BD là O
xét tg ODC có: ^OCD+^ODC=45+45=90 (vì ^ACD=^BDC=45)
=> tg ODC vuông tại O => AC ⊥ BD (đpcm)
Bn tự vẽ hình nhé
Xét hình thang ABCD có các đường cao AH và BK. Từ A kẻ đường thẳng song song với BD cắt CD ở E Þ AB = ED.
Chứng minh A C H ^ = 45 0 . Do DEAC vuông cân ở A nên A H = C H = E H = A B + C D 2
Hình thang ABCD, đường cao BH, hai đường chéo AC và BD cắt nhau ở O.
Trên tia đối của tia CD lấy điểm E sao cho CE = AB
Tứ giác ABEC có AB // CE ( AB // CD) và AB = CE nên ABEC là hình bình hành => BE = AC ( 2 cạnh đối) và BE // AC
Mà AC = BD (2 đường chéo của hình thang cân) => BE = BD
∆BDE có BE = BD (cmt) => ∆BDE cân tại B => đường cao BH đồng thời là đường trung tuyến
Theo đề bài: BH = 1/2(AB + CD) = 1/2(CE + CD) = 1/2.DE
∆BDE có trung tuyến BH = 1/2. DE => ∆BDE vuông cân tại B => góc BDC = 450 => góc ABD = 450
Rồi dựa vào tính chất tổng các góc kề cạnh bên = 180 độ rồi tính hết góc ra nha