K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

??????là sao??????

???

16 tháng 10 2020

là thế đó !!!!!!!!!!!!!!!!!

11 tháng 11 2015

gọi x là số sản phẩm làm được trong 1 ngày thì thời gian quy định là \(\frac{600}{x}\)với x>0

thời gian làm được 400 sản phẩm là \(\frac{400}{x}\)ngày

thời gian quy định còn lại là \(\frac{600}{x}\)-\(\frac{400}{x}\)=\(\frac{200}{x}\)

 sản phẩm làm được trong 1 ngày với năng suất mới là x+10

=>thời gian làm với năng suất mới là\(\frac{200}{x+10}\)

vì sớm hơn quy định 1 ngày nên ta có pt

\(\frac{200}{x}\)-1=\(\frac{200}{x+10}\)

<=>\(\frac{200-x}{x}=\)\(\frac{200}{x+10}\)

<=>\(\left(200-x\right)\left(x+10\right)=200x\)

<=>\(200x-10x-x^2+2000-200x=0\)

<=>-x2-10x+2000=0

<=>-\(\left(x^2+10x+25\right)+25+2000=0\)

<=>-\(-\left(x+5\right)^2=-2025\)

<=>\(\left(x+5\right)^2=2025\)

<=>x+5=45 vì x>0

<=>x=40

số sản phẩm làm được trong 1 ngày là 40 sản phẩm 

tick nha 

17 tháng 9 2019

Gọi số sản phẩm đội dự định làm mỗi ngày là x (x ∈ ℕ * , x < 84) (sản phẩm)

*) Theo kế hoạch, thời gian hoàn thành là 1000/x (ngày)

*) Thực tế, mỗi ngày làm được x + 10 (sản phẩm)

Thời gian hoàn thành 1000/(x+10) (ngày)

Vì thời gian thực tế ít hơn thời gian dự định là 2 ngày nên ta có phương trình:

Phương trình có hai nghiệm phân biệt: x 1 = − 25 – 75 = −100 (loại)

và x 2 = −25 + 75 = 50 (tmđk)

Vậy theo kế hoạch, mỗi ngày tổ dự định làm 50 sản phẩm

Đáp án: C

NV
20 tháng 3 2021

Gọi số sản phẩm làm theo kế hoạch mỗi ngày là x>0 và số ngày dự định là y>0

Ta có: \(xy=200\)

4 ngày đầu làm được: \(4x\) sản phẩm

Những ngày còn lại: \(\left(y-6\right)\left(x+10\right)\)

Theo bài ra ta có hệ:

\(\left\{{}\begin{matrix}xy=200\\4x+\left(y-6\right)\left(x+10\right)=200\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=200\\5y-x=30\end{matrix}\right.\)

\(\Rightarrow y\left(5y-30\right)=200\)

\(\Leftrightarrow y^2-6y-40=0\Rightarrow\left[{}\begin{matrix}y=10\\y=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{200}{10}=20\)

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
Gọi thời gian dự kiến là $a$ ngày thì năng suất dự kiến là $\frac{130}{a}$ sản phẩm / ngày.

Theo bài ra ta có:
Năng suất thực tế: $\frac{130}{a}+2$

Thời gian thực tế: $a-2$

Sản lượng thực tế: $(\frac{130}{a}+2)(a-2)=130+2$

$\Leftrightarrow a-\frac{130}{a}=3$

$\Leftrightarrow a^2-3a-130=0$

$\Rightarrow a=13$ (chọn) hoặc $a=-10$ (loại)

Vậy thời gian dự kiến là $13$ ngày.

22 tháng 7 2021

ai jup mik vs

 

15 tháng 5 2023

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$

14 tháng 5 2023

nhầm người rồi

23 tháng 3 2020

gọi x là số sản phẩm làm 1 ngày theo dự định
3200/x là số ngày làm 3200 sp theo dự định
5+(3200-5x)/(x+40) là số ngày làm xong sản phẩm thực tê
ta có pt
3200/x-3=(5+(3200-5x)/(x+40))

23 tháng 3 2020

xong chị giải pt ra là đc