Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo ở đây nha !!!
https://olm.vn/hoi-dap/detail/98064079856.html
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)
Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)
Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)
Ta cũng có:
\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)
Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)
Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\) và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)
Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5
Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)
Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)
Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)
\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)
Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)
Ta cũng có :
\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)
Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)
Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)
Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5
Vì số chia là x2 - 1
Áp dụng định lý Bơ-zu ta có : Số dư của phép chia là :
\(F\left(1\right)=x+x+x+x+7=4x+7\)
Số dư của phép chia là 4x+7
Gọi đa thức thương là Q(x) ; đa thức dư là R(x) khi thực hiện phép chia P(x) cho \(x^4\)+\(x^2\)+1 ta viết được : P(x)=Q(x).(\(x^4\)+\(x^2\)+1) + R(x)
=> P(x) - R(x) = Q(x).(\(x^4\)+\(x^2\)+1)
=> R(x) chia cho \(x^2\)+\(x\)+1 có số dư là 1 - x hay R(x) = (ax+b).(\(x^2\)+\(x\)+1)
+1-x
R(x) chia cho \(x^2\)-\(x\)+1 có số dư là 3x-5 hay R(x) = (cx+d).(\(x^2\)-\(x\)+1)
+3x-5
=>(ax+b).(\(x^2\)+\(x\)+1) - (cx+d).(\(x^2\)-\(x\)+1) - 4x-4
<=> \(x^3\)(a-c) + \(x^2\)(a+b+c-d) + \(x\)(a+b-c+d-4) +b-d-4
Áp dụng hệ số bất định ta có:
=>\(\left\{{}\begin{matrix}a-c=0\\a+b+c-d=0\\a+b-c+d-4=0\\b-d-4=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=c\\a+b=2\\b-d=4\\a+b+c-d=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=c\\c-b=2\\b-d=4\\2c+b-d=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=c\\b+c=2\\b-d=4\\b+2c-d=0\end{matrix}\right.\)
Giải hệ phương trình ta có:
\(\left\{{}\begin{matrix}a=c=-2\\b=4\\c=-2\\d=0\end{matrix}\right.\)
Vậy R(x) = (-2x+4).(\(x^2\)+\(x\)+1) + 1-x
Vậy đa thúc dư là \(-2x^3\)+\(2x^2\)+x+5
Bước giải hệ phương trình bạn có thể dùng máy tính CSIO 570 ES PLUS
mà giải( Giải ra dài lắm)