Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Độ biến dạng của lò xo tại vị trí cân bằng Δ l 0 = m g k = 0 , 2.10 80 = 2 , 5 cm.
Kéo vật đến vị trí lò xo dãn 7,5 cm rồi thả nhẹ → vật sẽ dao động với biên độ A = 5 cm → E = 0 , 5 k A 2 = 0 , 1 J .
Lực đàn hồi của lò xo có độ lớn nhỏ nhất khi vật đi qua vị trí lò xo không biến dạng, nếu chọn chiều dương hướng xuống vị trí này ứng với x = − 2 , 5 cm → E d = 1 2 k A 2 − x 2 = 1 2 80 0 , 05 2 − 0 , 025 2 = 0 , 075 J.
→ Thế năng của vật tại vị trí này là E t = E – E d = 0 , 1 – 0 , 075 = 0 , 025 J .
Lưu ý rằng thế năng của vật bằng tổng thế năng đàn hồi và thế năng trọng trường.
→ Thế năng đàn hồi của vật là E d h = 0 , 025 − 0 , 2.10.0 , 025 = − 0 , 025 J.
Đáp án A
+ Tần số góc của dao động: ω = k m = 60 150.10 − 3 = 20 rad/s
Độ biến dạng của lò xo tại vị trí cân bằng Δ l 0 = m g k = 150.10 − 3 .10 60 = 2 , 5 c m
+ Biên độ dao động ban đầu của vật: A = Δ l 0 2 + v 0 ω 2 = 2 , 5 2 + 50 3 20 2 = 5 cm.
Điện trường xuất hiện, vật đang ở vị trí động năng bằng ba lần thế năng, tại vị trí này vật có x = 0,5A = 2,5 cm, v = 3 2 ω A = 50 3 cm/s.
+ Dưới tác dung của điện trường con lắc sẽ dao động điều hòa tại vị trí cân bằng mới O′ nằm dưới vị trí cân bằng cũ một đoạn Δ l = q E k = 6.10 − 5 .2.10 4 60 = 2 cm.
→ So với vị trí cân bằng mới, tại vị thời điểm xảy ra biến cố, vật có x′ = 2,5 – 2 = 0,5 cm, v ' = 3 2 ω A = 50 3 cm/s.
Biên độ dao động mới: A ' = x ' 2 + v ' ω 2 ⇒ 0 , 5 2 + 50 3 20 2 = 19 cm.
Giải thích: Đáp án A
Phương pháp: Sử dụng lí thuyết về con lắc lò xo chịu thêm tác dụng của lực điện
Sử dụng hệ ̣thức độc lập theo thời gian của x và v
Cách giải:
Biên độ lúc đầu
Khi có điện trường VTCB lúc này là Om con lắc bị dịch xuống một đoạn:
Tại vị trí 0,5A bắt đầu thiết lập E li độ lúc này là:
Thời gian quả cầu đi từ vị trí cao nhất (x = -A) đến vị trí thấp nhất (x = A) chính là \(\frac{T}{2} = 0,2 => T = 0,4s.\)
Lực đàn hồi của lò xo khi lò xo ở vị trí thấp nhất chính là \(F_{dhmax} = k(A+\Delta l)\)
\(\frac{F_{max}}{P} = \frac{k(A+\Delta l)}{mg} = \frac{kA+k\Delta l }{mg } = 1+\frac{kA}{mg} =\frac{7}{4}\) (do \(k\Delta l = mg\))
=> \(A = \frac{3g}{4}\frac{m}{k} = \frac{3g}{4}.\frac{T^2}{4\pi^2} =0,03m = 3cm.\)
Đáp án B
+ Độ biến dạng của lò xo tại vị trí cân bằng
+ Đưa vật đến vị trí lò xo không biến dạng rồi thả nhẹ
+ Động năng của vật bằng thế năng lần đầu tiên tại vị trí
(trục Ox thẳng đứng, hướng xuống).
Lực đàn hồi có độ lớn
Đáp án A
∆ l 01 = m g k = 2 c m
ω = k m = 10 5 rad/s
∆ l 02 = m ' g k = 2 , 5 c m
Tại VTCB sau đó , lò xo giản 2,5 cm , tại thời điểm quả cầu tới biên dưới O lò xo giản 6 cm
=> A' = (6-2,5) = 3,5 cm; ω 2 = k m ' = 20
Vị trí O ban đầu cách VTCB lúc sau 0,5 cm
Đáp án C
Độ biến dạng của lò xo tại vị trí cân bằng
Kéo vật đến vị trí lò xo giãn 7,5 cm rồi thả nhẹ → vật sẽ dao động với biên độ A=5cm.
→ Lực đàn hồi có độ lớn nhỏ nhất khi vật đi qua vị trí lò xo không biến dạng.
Thế năng của con lắc bằng tổng thế năng đàn hồi và thế năng hấp dẫn. Với gốc thế năng tại vị trí cân bằng thì .
→ Thế năng đàn hồi khi đó có độ lớn
=-0,025J