Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vận tốc tức thời là:
\(v\left(t\right)=x'=4\cdot cost\)
Gia tốc tức thời là:
\(a\left(t\right)=v'=-4\cdot sint\)
b: \(v\left(\dfrac{2}{3}pi\right)=4\cdot cos\left(\dfrac{2}{3}\cdot pi\right)=-2\)
\(a\left(\dfrac{2}{3}pi\right)=-4\cdot sin\left(\dfrac{2}{3}pi\right)=-2\sqrt{3}\)
Con lắc lúc đó đang di chuyển theo hướng ngược chiều dương
a, Phương trình vận tốc là: v(t) = \(3t^2-6t+8\)
Phương trình gia tốc là: a(t) = \(6t-6\)
Thay t = 3 vào phương trình, ta được:
s = \(3^3-3\cdot3^3+8\cdot3+1=25\left(m\right)\)
\(v=3\cdot3^2-6\cdot3+8=17\left(m/s\right)\\ s=6\cdot3-6=12\left(m/s^2\right)\)
b, Theo đề bài, ta có:
\(t^3-3t^2+8t+1=7\\ \Leftrightarrow t^3-3t^2+8t-6=0\\ \Leftrightarrow\left(t-1\right)\left(t^2-2t+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=1\\t^2-2t+6=0\left(vô.nghiệm\right)\end{matrix}\right.\)
Khi t = 1(s), chất điểm đi được 7m
\(v=3\cdot1^2-6\cdot1+8=5\left(m/s\right)\\ a=6\cdot1-6=0\left(m/s^2\right)\)
a) Ta có \(v = s' = - 4.2\pi \sin 2\pi t = - 8\pi \sin 2\pi t\)
Vậy vận tốc tức thời của chuyển động tại thời điểm t là \( - 8\pi \sin 2\pi t\)
b) \(a\left( t \right) = v'\left( t \right) = {\left( { - 8\pi \sin 2\pi t} \right)^,} = - 8\pi .2\pi \cos 2\pi t = - 16{\pi ^2}\cos 2\pi t\)
Phương trình gia tốc là: \(a\left(t\right)=v'\left(t\right)=2t+2\)
a, Tại thời điểm t = 3(s), gia tốc tức thời là: \(a\left(3\right)=2\cdot3+2=8\left(m/s^2\right)\)
b, Vận tốc của chất điểm bằng 8
\(\Rightarrow t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
Vậy khi t = 8s thì chất điểm đạt vận tốc 8m/s.
\(v\left(t\right)=s'\left(t\right)=0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)\\ a\left(t\right)=v'\left(t\right)=-0,64\pi^2sin\left(0,8\pi t+\dfrac{\pi}{3}\right)\)
Vì:
\(v\left(t\right)=0\\ \Leftrightarrow0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)=0\\ \Leftrightarrow0,8\pi t+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi,k\in Z\\ \Leftrightarrow0,8\pi t=\dfrac{\pi}{6}+k\pi\\ \Leftrightarrow t=\dfrac{5}{24}+\dfrac{5k}{4}\)
Thời điểm vận tốc bằng 0, giá trị tuyệt đối của vật là
\(\left|a\left(\dfrac{5}{25}+\dfrac{5k}{4}\right)\right|=\left|-0,64\pi^2sin\left[0,8\pi\left(\dfrac{5}{24}+\dfrac{5k}{4}\right)+\dfrac{\pi}{3}\right]\right|\\ =0,64\pi^2\left|sin\left(\dfrac{\pi}{2}+k\pi\right)\right|\\ =0,64\pi^2\approx6,32\)
\(\Rightarrow\) Chọn C.
Vận tốc tức thời của chuyển động tại \(t = 2\) là:
\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)
Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)
Do \(-1\le sin\left(1,5t+\dfrac{\pi}{3}\right)\le1\Leftrightarrow-3\le-3sin\left(1,5t+\dfrac{\pi}{3}\right)\le3\Leftrightarrow-3\le v\le3\)
a, Vận tốc con lắc đạt giá trị lớn nhất khi
\(-3sin\left(1,5t+\dfrac{\pi}{3}\right)=3\\ \Leftrightarrow sin\left(1,5t+\dfrac{\pi}{3}\right)=-1\\ \Leftrightarrow sin\left(1,5t+\dfrac{\pi}{3}\right)=sin\left(-\dfrac{\pi}{2}\right)\\ \Leftrightarrow\left[{}\begin{matrix}1,5t+\dfrac{\pi}{3}=-\dfrac{\pi}{2}+k2\pi\\1,5t+\dfrac{\pi}{3}=\pi+\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow t=-\dfrac{5\pi}{9}+\dfrac{k4\pi}{3},k\in Z\)
Vậy vận tốc con lắc đạt giá trị lớn nhất tại các thời điểm \(t=-\dfrac{5\pi}{9}+\dfrac{k4\pi}{3},k\in Z\)
b, Để vận tốc con lắc bằng 1,5cm/s thì
\(-3sin\left(1,5t+\dfrac{\pi}{3}\right)=1,5\\ \Leftrightarrow sin\left(1,5t+\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}1,5t+\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\\1,5t+\dfrac{\pi}{3}=\pi+\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\\ \)
\(\Leftrightarrow \left[{}\begin{matrix}t=-\dfrac{\pi}{3}+\dfrac{k4\pi}{3}\\t=\dfrac{5\pi}{9}+\dfrac{k4\pi}{3}\end{matrix}\right.\) \(\left(k\in Z\right)\)
a) Vận tốc tức thời \(v\left( t \right)\) tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right) = 6{t^2} + 4\).
b) Gia tốc \(a\left( t \right)\) của chuyển động tại thời điểm \(t\) là: \(a\left( t \right) = v'\left( t \right) = 12t\).
Gia tốc của chuyển động tại thời điểm \(t = 2\) là: \(a\left( 2 \right) = 12.2 = 24\).
a) Vận tốc tức thời của con lắc: \(v(t) = - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
Gia tốc tức thời của con lắc: \(a(t) = - 4{\pi ^2}\cos \left( {\pi t - \frac{{2\pi }}{3}} \right)\)
b) Tại vận tốc tức thời của con lắc bằng 0, ta có:
\( - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \pi t - \frac{{2\pi }}{3} = 0 \Leftrightarrow t = \frac{2}{3}\)
Với \(t = \frac{2}{3} \Rightarrow a(t) = - \,4{\pi ^2}\cos \left( {\pi .\frac{2}{3} - \frac{2}{3}\pi } \right) = - \,4{\pi ^2}\)