Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tốc độ điểm nằm trên vành: v1=wR
Tốc độ điểm nằm chính giữa vành và tâm: v2=w\(\dfrac{R}{2}\)
\(\Rightarrow\) Tỉ số \(\dfrac{v_1}{v_2}\)= 2
Theo công thức của chuyển động quay biến đổi đều
\(\omega^2-\omega^2_0=2.\gamma.\varphi\)
\(\left(\omega-\omega_0\right).\left(\omega+\omega_0\right)=2.\frac{\left(\omega-\omega_0\right)}{t}.\varphi\)
\(\left(\omega+\omega_0\right).t=2.\varphi\)
Với \(t=30s\), \(\omega=20\pi\) và \(\varphi=360\pi\)
suy ra
\(\omega_0=4.\pi\) rad/s và \(\gamma=16\pi\text{ /}30\) rad/s2
Thời gian để đạt được tốc độ \(\omega_0\) từ trạng thái nghỉ là \(\omega_0\text{π /}\gamma\) = 7.5 s
Phương trình chuyển động của bánh xe từ trạng thái nghỉ là
\(\varphi\)= (1/2 ). (16\(\pi\)/30).t2 rad
Chọn C
f = n p 60 = 25 ( H z ) E = N · 2 π f · B S 2 = N · 2 π f · B π r 2 2 = 1000 · 2 π · 25 · 0 , 2 · π · 10 - 4 2 ≈ 7 ( V )
Đáp án C
Tần số góc chuyển động quay của khung dây ω = 2πn = 4π rad/s.
+ Từ thông qua mạch
→ Suất điện động cảm ứng trong khung dây: