Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)
b)\(=\frac{3x\left(x+y\right)}{y}\)
c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)
b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)
c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)
h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)
j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)
Câu b) bạn xem lại nhé.
Học tốt ^3^
a: Ta có: \(A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=4x\cdot2y=8xy\)
b: Ta có: \(B=\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(2y-1\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Câu A) là \(\left(2x+y\right)^2-\left(y-2x\right)^2\)
Chứ ko phải là\(\left(2x+y\right)^2-\left(2x-y\right)^2\)
Nhưng dù sao thì cũng cảm ơn
a ) \(\left(x+y\right)^3+\left(x-y\right)^3-2x^3\)
\(=x^3+3x^2y+3y^2x+y^3+x^3-3x^2y+3y^2x-y^3-2x^3\)
\(=\left(x^3+x^3-2x^3\right)+\left(y^3-y^3\right)+\left(3x^2y-3x^2y\right)+\left(3y^2x+3y^2x\right)\)
\(=6y^2x\)
b ) \(\left(x+y\right)^2-\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)+x^2-y^2\)
\(=2y.2x+x^2-y^2\)
\(=x^2-y^2+4xy\)
c ) \(\left(3x+1\right)^2+2\left(9x^2-1\right)+\left(3x-1\right)^2\)
\(=\left(3x+1\right)^2+2\left(3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(3x+1+3x-1\right)^2\)
\(=\left(6x\right)^2=36x^2\)
d ) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(a+b+c-b-c\right)^2\)
\(=a^2\)
\(\left(3x-2y\right)^3+\left(y+2x\right)^3-\left(4x-5y\right)\left(16x^2+20xy+25y^2\right)\)
\(=27x^3-54x^2y+36xy^2-8y^3+y^3+6xy^2+12x^2y+8x^3-\left(64x^3-125y^3\right)\)
\(=35x^3-42x^2y+42xy^2-7y^3-64x^3+125y^3\)
\(=-29x^3-42x^2y+42xy^2+118y^3\)
a) Đề sai nha bạn :) mấy dấu cộng bạn phỉa chuyển thành dấu nhân nhé
\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)
\(A=2^{512}-1+1\)
\(A=2^{512}\)
b . ( 5x - 3y + 4z )( 5x - 3y - 4z ) = ( 5x - 3y )^2 - ( 4z )^2 = 25x^2 - 30xy + 9y^2 - 16z^2 = 25( y^2 + z^2 ) - 30xy + 9y^2 - 16z^2 = 9z^2 + 34y^2 - 30xy ( 1 )
( 3x - 5y )^2 = 9x^2 - 30xy + 25y^2 = 9( y^2 + z^2 ) - 30xy + 25y^2 = 34y^2 + 9z^2 - 30xy ( 2 )
Tu ( 1 ) va ( 2 ) => dpcm
a: \(\left(3x+4y\right)\left(9x^2-12y+16y^2\right)\)
\(=27x^3-36xy+48xy^2+36x^2y-48y^2+64y^3\)
b: \(\left(x+3\right)^3-\left(3x-1\right)^2\)
\(=x^3+9x^2+27x+27-\left(9x^2-6x+1\right)\)
\(=x^3+9x^2+27x+27-9x^2+6x-1\)
\(=x^3+33x+26\)
`#3107.101107`
`1.`
`a,`
`(3x + 4y)(9x^2 - 12xy + 16y^2)?`
`= (3x)^3 + (4y)^3`
`= 27x^3 + 64y^3`
`b,`
`(x + 3)^3 - (3x - 1)^2`
`= x^3 + 9x^2 + 27x + 27 - (9x^2 - 6x + 1)`
`= x^3 + 9x^2 + 27x + 27 - 9x^2 + 6x - 1`
`= x^3 + 33x + 26`
_____
Sử dụng HĐT:
`A^3 + B^3 = (A + B)(A^2 + AB + B^2)`
`(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
`(A - B)^2 = A^2 - 2AB + B^2.`
1, \(\left(3x-5y\right)^2-2\left(9x^2-25y^2\right)+\left(3x+5y\right)^2\)
\(=\left(3x-5y\right)^2-2\left(3x-5y\right)\left(3x+5y\right)+\left(3x+5y\right)^2\)
\(=\left(3x-5y-3x-5y\right)\)
\(=\left(-10y\right)^2=100y^2\)
2, \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(=\left(y^2-9\right)\left(y^2+9\right)-y^4+4\)
\(=y^4-81-y^4+4=-77\)