K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=\frac{m+1}{m}\\x+\left(m+1\right)y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m-1\right)y=2-\frac{m+1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)y=\frac{m-1}{m}\\x+2y=\frac{m+1}{m}\end{cases}}}\)

bình thường dùng pp thế nhưng chắc bài này cộng là nhanh nhất rồi ( ͡° ͜ʖ ͡°) 

với m=1 thì y vô số nghiệm => x vô số nghiệm thỏa mãn pt dưới

Với \(m\ne1\Rightarrow y=\frac{1}{m}\Rightarrow x=\frac{m+1}{m}-\frac{2}{m}=\frac{m-1}{m}\)

b/ \(A\left(\frac{m-1}{m};\frac{1}{m}\right)\)

I/Vì x=1-y nên A luôn nằm trên đồ thị hàm số x=1-y

II/ Để A thuộc góc phân tư thứ nhất thì x>0, y>0, \(\Leftrightarrow\hept{\begin{cases}1-\frac{1}{m}>0\\\frac{1}{m}>0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{m}< 1\\m>0\end{cases}\Leftrightarrow}m>1}\)

Vậy với m>1 thì A thuộc góc phần tư thứ nhất

III/ Cái này thì bạn tự vẽ hình, kẻ đường cao xuống rồi dùng hệ thức lượng liên hệ giữa đường cao và cạnh góc vuông tính  

2 tháng 2 2017

Chưa hok

24 tháng 1 2020

\(a)\) Hàm số \(y=\left(2-3m\right)x+2m-5\)đồng biến 

\(\Leftrightarrow2-3m>0\)

\(\Leftrightarrow3m< 2\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy với giá trị \(m< \frac{2}{3}\)thì hàm số trên đồng biến

\(b)\)  \(\left(d\right)\)đi qua gốc tọa độ

\(\Leftrightarrow\)Hàm số \(y=\left(2-3m\right)x+2m-5\)có dạng \(y=ax\)

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow2m=5\)

\(\Leftrightarrow m=\frac{5}{2}\)

Vậy \(m=\frac{5}{2}\)

\(c)\) Vì đths đi qua \(A\left(1;1\right)\)

\(\Rightarrow\)Thay \(x=1;y=1\)vào hàm số \(y=\left(2-3m\right)x+2m-5\)

Có: \(\left(2-3m\right).1+2m-5=1\)

\(\Leftrightarrow2-3m+2m-5=1\)

\(\Leftrightarrow-3-m=1\)

\(\Leftrightarrow m=-4\)

Vậy \(m=-4\)

\(d)\) Pt hoành độ giao điểm thỏa mãn:

\(2x-1=x-2\)

\(\Leftrightarrow x=-1\)

\(\Leftrightarrow y=x-2\)

\(\Leftrightarrow y=-3\)

Để \(\left(d\right);y=2x-1;y=x-2\)đồng quy thì:

\(A\left(-1;-3\right)\in d\)

\(\Leftrightarrow\left(2-3m\right)\left(-1\right)+2m-5=-3\)

\(\Leftrightarrow-2+3m+2m-5=-3\)

\(\Leftrightarrow-7+5m=-3\)

\(\Leftrightarrow5m=4\)

\(\Leftrightarrow m=\frac{4}{5}\)

\(e)\) Vì \(\left(d\right)\)cắt trục \(Oy\)tại điểm có tung độ \(=-1\)

\(\Rightarrow\left(0;-1\right)\in\left(d\right)\)

Thay \(x=0;y=-1\)vào hàm số

Có: \(\left(2-3m\right).0+2m-5=-1\)

\(\Leftrightarrow2m-5=-1\)

\(\Leftrightarrow2m=4\)

\(\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) Đths \(y=\left(2-3m\right)x+2m-5\)đi qua gốc tọa độ 

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow2m=5\)

\(\Leftrightarrow m=\frac{5}{2}\)

Mà đths \(y=\left(2-3m\right)x+2m-5\)\(\in\)góc phần tư \(\left(II\right),\left(IV\right)\)

\(\Leftrightarrow2-3m< 0\)

\(\Leftrightarrow3m>2\)

\(\Leftrightarrow m>\frac{2}{3}\)

Ta có \(m=\frac{5}{2}\)(tmđk \(m>\frac{2}{3}\))

Vậy \(m=\frac{5}{2}\)

Bài 1: Cho hàm số y = (m-1)x + m, (với m là tham số) có đồ thị là đường thẳng (d)a) Xác định giá trị của m để đồ thị (d) của hàm số cắt trục tung tại điểm có tung độ bằng 2b) Xác định giá trị của m để đồ thị (d) của hàm số tạo với trục Ox 1 góc 45 độ. Khi đó hãy xác định công thức của đường thẳng (d') đi qua M(2;0) và song song với (d)Bài 2: Cho đường tròn tâm O dường kính...
Đọc tiếp

Bài 1: Cho hàm số y = (m-1)x + m, (với m là tham số) có đồ thị là đường thẳng (d)

a) Xác định giá trị của m để đồ thị (d) của hàm số cắt trục tung tại điểm có tung độ bằng 2

b) Xác định giá trị của m để đồ thị (d) của hàm số tạo với trục Ox 1 góc 45 độ. Khi đó hãy xác định công thức của đường thẳng (d') đi qua M(2;0) và song song với (d)

Bài 2: Cho đường tròn tâm O dường kính BC, điểm A thuộc đường tròn. Vẽ bán kính OK song song với BA ( K và A nằm cùng phía đối diện với BC). Tiếp tuyến với đường tròn (O) tại C cắt OK ở I, OI cayws AC tại H. Chứng minh:

a) 4 điểm A, O, C, I cùng thuộc 1 đường tròn

b) IA là tiếp tuyến của đường tròn (O)

c) CK là phân giác của góc ACI 

Bài 3: Cho tâm giác cân ABC (AB = AC), các đường cao AC, BE, CF cắt nhau tại H. Chứng mình:

a) 4 điểm A, E, H, F cùng thuộc 1 đường tròn tâm O đường kính AH 

b) DE là tiếp tuyến của đường tròn (O)

c) DH.DA = DE.DE 

 

 

 

0
Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0