Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{ACB}=60^0\)
c: \(AC=4\sqrt{3}\left(cm\right)\)
(8x-3)(3x+2)-(4x+7)(x+4) = (2x+1)(5x-1)-33
(24x2-9x+16x-6)-(4x2+7x+16x+28) = (10x2+5x-2x-1)-33
24x2+7x-6-4x2-23x-28 = 10x2+3x-1-33
20x2-16x-34 = 10x2+3x-34
<=> 20x2-16x = 10x2+3x
2x2-19x=0
2x(x-19)=0
=>\(\left[{}\begin{matrix}2x=0\Rightarrow x=0\\x-19=0\Rightarrow x=19\end{matrix}\right.\)
Không chắc lắm :)
ở trên đúng r, nhưng sai từ chỗ 2x^2 -19x=0, đáng lẽ phải là 10x^2 -19x =0 mới đúng
Gọi vận tốc và thời gian dự định lần lượt là v và t. Quãng đường là S.
Theo đề ra : \(\frac{S}{v}-\frac{S}{v+5}=\frac{1}{3}\)
Mà \(S=v.t=v\cdot\frac{10}{3}\)
=> \(\frac{v\cdot\frac{10}{3}}{v}-\frac{v\cdot\frac{10}{3}}{v+5}=\frac{1}{3}\)
Giải ra ta đc : \(v=15\)=> \(S=v.t=\frac{15.10}{3}=50\)
\(=\left(x-y\right)\left(x+y\right)+11\left(x-y\right)=\left(x+y+11\right)\left(x-y\right)\)
Ta có: \(x^4-30x^2+31x-30=0\) \(\Rightarrow x^4+x-30x^2+30x-30=0\)
\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+x-30=0\Rightarrow x^2-5x+6x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)
Vậy x=5 hoặc x = -6
\(\Leftrightarrow x^4-5x^3+5x^3-25x^3-5x^3+25x+6x-30=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(x^3+6x^2-x^2-6x+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)
hay \(x\in\left\{5;-6\right\}\)
\(x+y+z=0\Leftrightarrow x^2+y^2+z^2=-2\left(xy+xz+yz\right)\)
Mẫu số nhân ra : \(2\left(x^2+y^2+z^2\right)-2\left(xy+xz+yz\right)=3\left(x^2+y^2+z^2\right)\)
\(A=\dfrac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)
15 phút = 1/4 giờ , 2 giờ 30 phút = 5/2 giờ
Gọi độ dài quãng đường AB là x (km) (x > 0)
Ta có: \(\frac{x}{50}+\frac{1}{4}+\frac{x}{40}=\frac{5}{2}\)
\(\Leftrightarrow\frac{4x+50+5x}{200}=\frac{500}{200}\)
\(\Leftrightarrow4x+50+5x=500\Leftrightarrow9x=450\Leftrightarrow x=50\) (thỏa mãn)
Vậy quãng đường AB dài 50 km.
\(1,\\ a,=3x^2+2x\\ b,=x^2+13x+40\\ c,=x^3+6x^2+8x^2+48x-x-6=x^3+14x^2+47x-6\\ 2,\\ a,=x^2+4x+4\\ b,=x^2-16y^2\\ c,=4x^2-12xy+9y^2\\ d,=x^3-27\\ 3,\\ a,=3x\left(x+2\right)\\ b,=\left(x+y\right)\left(4x+5\right)\\ c,=6x\left(2x^2-x+3\right)\)
bạn có thể làm rõ ra từng bước giúp mình được ko ạ