\(1+\frac{1}{2}+\frac{1}{2^2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

\(A=1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

10 tháng 5 2018

A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Leftrightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(I=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2I=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(2I=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2I-I=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2011}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(I=1-\frac{1}{1^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

Vậy \(A=2-\frac{1}{2^{2012}}\)

30 tháng 4 2018

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

\(2A-A=(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}})-(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}})\)

\(A=2-\frac{1}{2^{2012}}\)

Vậy A = \(2-\frac{1}{2^{2012}}\)

~Chúc bạn học tốt~

30 tháng 4 2018

Xét\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

Lấy 2A - A Ta được

\(A=2-\frac{1}{2^{2012}}\)

8 tháng 4 2018

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\right)\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(B=1-\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

11 tháng 5 2019

đúng rùi đó

11 tháng 5 2019

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)

\(A=2-\frac{1}{2^{2012}}\)

12 tháng 3 2017

\(D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2014}{2015}\)

\(D=\frac{1\cdot2\cdot3\cdot...\cdot2014}{2\cdot3\cdot4\cdot...\cdot2015}=\frac{1}{2015}nhebn\)

12 tháng 3 2017

(2/2-1/2).(3/3-1/3).(4/4-1/4)............(2015/2015-1/2015 )

1/2.2/3.3/4.....................2014/2015

=1/2015