K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

A B C D M Q N P I

gọi I là giao điểm của QM và BD

Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)

\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)

vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)

Ta có : MB = NB ; DP = DQ ; PC = NC 

nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)

do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng

từ đó ta được đpcm

a: góc BFC=góc BEC=1/2*180=90 độ

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

góc AFH+góc AEH=180 độ

=>AEHF là tứ giác nội tiếp

b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng với ΔADB

=>AF/AD=AH/AB

=>AF*AB=AD*AH