Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cap B=\varnothing\Leftrightarrow2m-7\le13m+1\)
\(\Leftrightarrow11m\ge-8\Rightarrow m\ge-\dfrac{8}{11}\)
\(\Rightarrow\) Số nguyên m nhỏ nhất là \(m=0\)
Hàm bậc 2 có \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=6-m\end{matrix}\right.\) nên nghịch biến trên khoảng \(\left(-\infty;6-m\right)\)
Hàm nghịch biến trên khoảng đã cho khi:
\(6-m\ge2\Rightarrow m\le4\)
\(\Rightarrow\) Có 4 giá trị nguyên dương của m
Gọi E là giao điểm của AC và BD
Hình vẽ:
\(\overrightarrow{MN}=\overrightarrow{DN}-\overrightarrow{DM}=\dfrac{2}{3}\overrightarrow{DB}+\dfrac{3}{4}\overrightarrow{AD}\)
\(=\dfrac{4}{3}\overrightarrow{EB}+\dfrac{3}{4}\overrightarrow{BC}\)
\(=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AE}\right)+\dfrac{3}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)
\(=\dfrac{4}{3}\left(\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AC}\right)+\dfrac{3}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\dfrac{7}{12}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DC}=\dfrac{3}{4}\overrightarrow{AD}+\overrightarrow{AB}\)
\(=\dfrac{3}{4}\overrightarrow{BC}+\overrightarrow{AB}\)
\(=\dfrac{3}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)+\overrightarrow{AB}\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\)
\(\overrightarrow{MB}=\overrightarrow{AB}-\overrightarrow{AM}=\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\)
\(=\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{BC}\)
\(=\overrightarrow{AB}-\dfrac{1}{4}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)
\(=\dfrac{5}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AC}\)
ĐKXĐ: \(x>3\)
\(\Leftrightarrow2x+2\sqrt{x-3}\sqrt{x+3}=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\left(\sqrt{x+3}+\sqrt{x-3}\right)^2=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-3}=\dfrac{2\sqrt{x+3}}{x-3}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x+3}-\sqrt{x-3}}=\dfrac{\sqrt{x+3}}{x-3}\)
\(\Leftrightarrow3x-9=x+3-\sqrt{x^2-9}\)
\(\Leftrightarrow\sqrt{x^2-9}=12-2x\) (\(x\le6\))
\(\Leftrightarrow x^2-9=144-48x+4x^2\)
\(\Leftrightarrow3x^2-48x+153=0\)
\(\Leftrightarrow x=8-\sqrt{13}\)
Câu 25: B