K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

Đáp án A

19 tháng 9 2019

Chọn A.

Do IO là đường trung bình của tam giác SAC nên:

* OM là đường trung bình tam giác ACD nên:

Tính thể tích của khối chóp I.OBM:

13 tháng 5 2018

Đáp án C.

Hướng dẫn giải:

Ta có

 

Kẻ H I ⊥ C K , H J ⊥ F I  

 

Ta có H I = 2 a 5 5

⇒ S B = a 3

⇒ H F = a 2 2

Ta có 1 H J 2 = 1 H I 2 + 1 H F 2 = 13 4 a 2

2 tháng 4 2017

3 tháng 9 2016

không vẽ hình được k bạn?

 

17 tháng 6 2022

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

3 tháng 6 2019

Chọn C

Ta có

Do 

Có 

Ta lại có  

Và 

30 tháng 12 2017

26 tháng 9 2017

Đáp án B