Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet (O) có
ΔAHB nội tiếp
AB là đường kính
Do đo: ΔAHB vuông tại H
=>AH vuông góc với BC
AB^2=BC*BH
b: ΔOAD cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOD
Xét ΔOAC và ΔODC có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔOAC=ΔODC
=>góc ODC=90 độ
=>CD là tiếp tuyến của (O)
a) Chứng minh AE.AC=AH.AD:
Xét \(\Delta\)AEH và \(\Delta\)ADC: ^AEH=^ADC(=900); ^DAC chung => \(\Delta\)AEH ~ \(\Delta\)ADC (g.g)
\(\Rightarrow\frac{AE}{AD}=\frac{AH}{AC}\Rightarrow AE.AC=AH.AD\)(đpcm).
b) Chứng minh P;H;Q thẳng hàng:
Ta nối 2 điểm P và Q với điểm H.
Xét đường tròn (I): Có AQ là tiếp tuyến; AEC là cát tuyến => ^AQE=^ACQ
Xét \(\Delta\)AEQ và \(\Delta\)AQC: ^QAC chung; ^AQE=^ACQ => \(\Delta\)AEQ ~ \(\Delta\)AQC (g.g)
\(\Rightarrow\frac{AQ}{AC}=\frac{AE}{AQ}\Rightarrow AQ^2=AE.AC\)
Lại có: \(AE.AC=AH.AD\Rightarrow AQ^2=AH.AD\Rightarrow\frac{AQ}{AH}=\frac{AD}{AQ}\)
Xét \(\Delta\)AHQ và \(\Delta\)AQD: ^DAQ chung; \(\frac{AQ}{AH}=\frac{AD}{AQ}\)=> \(\Delta\)AHQ ~ \(\Delta\)AQD (c.g.c)
\(\Rightarrow\)^AQH=^ADQ (1)
Ta thấy: AP và AQ là 2 tiếp tuyến của (I) => Tứ giác APIQ nội tiếp đường tròn (Tâm là trung điểm AI)
Dễ có tứ giác ADIQ nội tiếp đường tròn tâm là trung điểm AI (Do ^ADI=^AQI=900)
Từ đó suy ra: 5 điểm A;P;D;I;Q cùng thuộc 1 đường tròn => Tứ giác APDQ nội tiếp dường tròn
=> ^ADQ=^APQ (Cùng chắn cung AQ) (2)
Từ (1) và (2) => ^AQH=^APQ. Mà \(\Delta\)PAQ cân đỉnh A => ^APQ=^AQP => ^AQH=^AQP
Dễ thấy 2 tia QH và QP nằm cùng phía so với mặt phẳng bờ là AQ
=> P;H;Q là 2 điểm thẳng hàng (đpcm).
c) Chứng minh HP vuông với AK và KH vuông với AI:
Ở phần c) Mình sửa điểm P thành điểm R vì phần b) đã có điểm P rồi.
+) Ta có: Tứ giác BFEC nội tiếp (I) => ^ECB=^BFK hay ^KCE=^KFB
=> \(\Delta\)KBF ~ \(\Delta\)KEC (g.g) => \(\frac{KB}{KE}=\frac{KF}{KC}\Rightarrow KB.KC=KE.KF\)(3)
Xét đường tròn (O) có 2 cát tuyến KRA và KBC, ta có ngay tỉ số: \(\frac{KR}{KC}=\frac{KB}{KA}\Rightarrow KB.KC=KR.KA\)(4)
Từ (3) và (4) => \(KE.KF=KR.KA\)\(\Rightarrow\frac{KR}{KE}=\frac{KF}{KA}\)
=> \(\Delta\)KRF ~ \(\Delta\)KEA (c.g.c) => ^KRF=^KEA. Mà ^KRF+^FRA=1800
=> ^KEA+^FRA=1800 hay ^FRA+^FEA=1800 => Tứ giác ARFE nội tiếp đường tròn.
Mà tứ giác AFHE nội tiếp đường tròn => 5 điểm A;R;F;H;E cùng thuộc 1 đường tròn
=> Tứ giác ARFH nội tiếp đường tròn => ^ARH=^AFH.
Lại có: ^AFH=900 => ^ARH=900 => HR vuông góc AR hay HR vuông góc AK (ddpcm0.
+) Gọi giao điểm của tia RH và (O) là M => ^ARM=^ARH=900
Tứ giác ARBM nội tiếp đường trong nên ^ARM=^ABM (=900) => AB vuông góc BM
Lại thấy CF vuông góc AB => CF//BM hay CH//BM
Tứ giác ABMC nội tiếp đường tròn => ^ABM+^ACM=1800 => ^ACM=900
Tương tự ta c/m được: CM//BH
Xét tứ giác BHCM: CH//BM; CM//BH (cmt) => Tứ giác BHCM là hình bình hành
Do I là trung điểm BC nên H.I.M thẳng hàng => R;H;I thẳng hàng và IR vuông góc AK
Xét \(\Delta\)KAI: IR vuông AK; AD vuông KI; IR cắt AD tại H => H là trực tâm của \(\Delta\)KAI
=> KH vuông góc với AI (đpcm).
d) Chứng minh BC;EF;PQ đồng quy:
Vì EF cắt BC tại điểm K nên ta sẽ chứng minh K;P;Q là 3 điểm thẳng hàng.
Dễ có: Tứ giác APDI nội tiếp đường tròn => ^DPI=^DAI.
Mà ^DAI=^IKH (Cùng phụ góc AIK) => ^DPI=^IKH hay ^DPI=^DKP
Xét \(\Delta\)KPD: ^DKP + ^KDP+^KPD = 1800 => ^DPI + ^KDP + ^KPD = 1800
=> ^KPI + ^KDP = 1800 (5)
Để ý rằng tứ giác PDIQ nội tiếp đường tròn => ^IQP=^KDP.
Mà \(\Delta\)PIQ cân đỉnh I => ^IQP=^IPQ => ^KDP=^IPQ (6)
Từ (5) và (6) => ^KPI + ^IPQ = 1800 => ^KPQ = 1800 => 3 điểm K;P;Q thẳng hàng.
Qua đó, ta suy ra được BC;EF;PQ đồng quy (đpcm).
Mấy bữa nay mình ghét nhất là từ chtt ấy nha câu dễ thì có trong đó nhưng những câu khó tất nhiên ko có rồi mình mong các bạn hỉu ý của mình và ai biết thì làm bài giải đầy đủ sẽ có nhìu người tick chứ cứ chtt hoài mình muốn chết còn sướng hơn các bạn thử nghĩ nếu như một lúc nào đó các bạn có bài giải rất khó nhưng ko biết làm rồi lên đây hỏi mà ai cũng trả lời là chtt các bạn có bực mình ko. Mình chỉ nói thế thôi mong các bạn sẽ hỉu và đừng ghi chữ chtt nữa.