Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3.
$3(-4x^2y^2)y=3(-4).x^2y^2.y=-12x^2y^{2+1}=-12x^2y^3$
Đáp án C
Bài 4.
$(-2xy^3).(-4x^2y)=(-2).(-4).x.x^2.y^3.y=8x^3y^4$
$-2xy(-4x^2y^2)=(-2)(-4).x.x^2.y.y^2=8x^3y^3$ nên đơn thức A không đồng dạng với đơn thức ban đầu.
$x^2y(-8x^2y^2)=-8x^4y^3$ nên đơn thức D không đồng dạng với đơn thức ban đầu.
a: M=2x^3-x^3+5x^2-3x^2+1-2
=x^3+2x^2-1
b: Bậc là 3
c: Khi x=2 thì M=2^3+2*2^2-1=15
Trường hợp 1: \(a+b+c+d=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c-d\\b+c=-d-a\\c+a=-b-d\\a+d=-b-c\end{matrix}\right.\)
\(\Leftrightarrow A=-1-1-1-1=-4\)
Trường hợp 2: \(a+b+c+d\ne0\)
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}=\dfrac{4\left(a+b+c+d\right)}{a+b+c+d}=4\\ \Leftrightarrow\left\{{}\begin{matrix}2a+b+c+d=4a\\a+2b+c+d=4b\\a+b+2c+d=4c\\a+b+c+2d=4d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=3a\\a+b+c+d=3b\\a+b+c+d=3c\\a+b+c+d=3d\end{matrix}\right.\\ \Leftrightarrow a=b=c=d\\ \Leftrightarrow A=1+1+1+1=4\)
Vậy ...
a) x = 135 (2 góc đồng vi)
b) x = 90 vì góc K và góc H là 2 góc trong cùng phía, tính chất của 2 góc trong cùng phía là bù nhau nên ta có: 180 - 90 = 90
TK :
- Cạnh huyền góc nhọn: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn tương ứng của tam giác vuông kia thì 2 tam giác đó bằng nhau.
- Cạnh góc vuông-góc nhọn kề: Nếu cạnh huyền và góc nhọn kề của tam giác vuông này bằng cạnh huyền và góc nhọn kề tương ứng của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
\(=\dfrac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}+\dfrac{9^3\cdot71}{3^2\cdot71}=3^2+81=90\)
Câu 15: B
Câu 16: D