Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) So sánh ∠B và ∠C
Xét ΔABC ta có: AC > AB (8 > 6) ⇒ ∠C > ∠B (định lí)
b) Tính BC ?
Áp dụng định lí Pytago vào ΔABC vuông tại A
Ta có: BC2 = AB2 + AC2
= 62 + 82
= 36 + 64 = 100
⇒ BC = 10 (cm)
c) EA = EH
Xét hai tam giác vuông ABE và HBE có:
∠ABE = ∠HBE (BE là phân giác)
BE : cạnh chung
Do đó: ΔABE = ΔHBE (cạnh huyền - góc nhọn)
⇒ EA = EH (hai cạnh tương ứng)
Gọi độ dài cạnh góc vuông còn lại là a
Áp dụng định lí Pytago ta có
\(13^2=a^2+12^2\)
\(\Rightarrow169=a^2+144\)
\(\Rightarrow a^2=169-144\)
\(\Rightarrow a^2=25\)
\(\Rightarrow a=5\)
Vậy cạnh góc vuông còn lại dài 5cm
Xét tam giác vuông đó, gọi cạnh góc vuông còn lại cần tìm là: a (a > 0)
=> \(12^2+a^2=13^2\) ( Định lí Py-ta-go )
\(a^2=13^2-12^2\)
\(a^2=25\)
\(=>a^2=5^2\)
\(=>a=5\)
Vậy cạnh góc vuông còn lại của tam giác vuông đó là: 5cm
gọi cạnh góc vuông ta cần tìm là x
áp dụng định lý pitago, ta có
122 + x = 132
suy ra x = 132 - 122=25
suy ra x = 5
vậy cạnh góc vuông còn lại là 5
a) vì M là tđ AB -> AM=1/2AB=5cm
N là tđ AC -> AN=1/2AC= 12cm
áp dụng pytago vào tam giác ANM => MN=13cm
b) theo công thức tính diện tích tam giác ANM (cái này mình chưa biết bạn học chưa, nếu chưa thì nhắn cho mình giải thích cho)
1/2(AM x AN) = 1/2(MN x AH)
=> AM x AN = MN x AH -> 5 x 12 = 13 x AH
=> AH=60/13cm
c) xét 2 tam giác BKM vuông tại K và AHM vuông tại H
có góc AMH + góc BMK ( đối đỉnh )
AM=MB ( M là Tđ AB)
=> 2 tam giác BKM=AHM (cạnh huyền góc nhọn)
d) áp dụng pytago vào tam giác AHM vuông tại H
AM2-AH2=HM2 => HM=MK=25/13cm (vì 2 tam giác ở câu c bằng nhau)
tam giác ABC có góc A vuông
ta có : BC2 = AB2 +AC2 ( định lý pytago )
thay BC2 = 102 + 242
=> BC=26 cm
ta lại có : M là trung điểm của AB => AM=1/2AB=1/2 . 10 =5 cm
tương tự : N là trung điểm của AC => AN = 1/2AC = 1/2 .24 = 12 cm
tam giác AMN vuông tại A , ta có : MN2 = AM2 + AN2 ( định lí pytago )
thay MN2 = 52 + 122
=> MN = 13 cm
Vậy MN = 13 cm
(Bạn tự vẽ hình giùm)
a/ \(\Delta ABH\)vuông và \(\Delta ACH\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)
Cạnh AH chung
=> \(\Delta ABH\)vuông = \(\Delta ACH\)vuông (cạnh huyền - góc nhọn)
b/ \(\Delta ABH\)vuông tại A => AB2 = AH2 + HB2 (định lý Pitago)
=> AB2 = 42 + 32
=> AB2 = 16 + 9
=> AB2 = 25
=> AB = \(\sqrt{25}\)= 5 (cm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AH cũng là đường trung tuyến
Ta lại có: H là trung điểm của AC
và HM // AC
=> M là trung điểm của AB
và G là giao điểm của hai đường trung tuyến AH và CG của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
=> \(AG=\frac{2}{3}AH\)(tính chất trọng tâm của tam giác)
=> \(AG=\frac{2}{3}.4=\frac{8}{3}\)(cm)
trả lời
Hai cạnh góc vuông của một tam giác vuông có độ dài lần lượt bằng 3cm và 4cm.
Độ dài cạnh huyền của tam giác đó bằng.....5 cm....... cm.
hc tốt
c
bạn bt công thức ko chỉ mk với?