Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Vì BA là đường cao của tam giác BCE (BA | EC)
Mà BE là đường trung tuyến của tam giác BCE (AE = AC)
=> Tam giác BCE cân tại B (1)
Mà ta có: \(\widehat{ABC}+\widehat{C}=90^0\)
hay \(30^0+\widehat{C}=90^0\Rightarrow\widehat{C}=60^0\) (2)
Từ (1) và (2) => Tam giác BCE đều
b) Ta có: A là trung điểm của EC (AE = EC)
=> \(AC=\frac{1}{2}EC\)
Mà EC = BC (Tam giác BCE đều)
=> \(AC=\frac{1}{2}BC\)(đpcm)
bn tự vẽ nha :
a, Xét \(\Delta ADE\)
có \(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\) là tam giác cân
b, Xét \(\Delta ABC\) và \(\Delta ADE\) có :
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) ( đối đỉnh )
\(AC=AE\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)
\(\Rightarrow\widehat{EDA}=\widehat{ACB}\) ( hai góc tương ứng)
\(\Rightarrow ED\)//\(BC\)
1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)
Suy ra: BC=DE(hai cạnh tương ứng)
2) Xét ΔABD có AB=AD(gt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)
nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
a: Sửa đề: AC=12cm
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b:
Ta có: AB và AE là hai tia đối nhau
=>A nằm giữa B và E
mà AB=AE
nên A là trung điểm của BE
Xét ΔCBE có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBE cân tại C
c: Ta có: ΔCBE cân tại C
mà CA là đường cao
nên CA là phân giác của góc ECB
Xét ΔCIA vuông tại I và ΔCHA vuông tại H có
CA chung
\(\widehat{ICA}=\widehat{HCA}\)
Do đó: ΔCIA=ΔCHA
d: Ta có: ΔCIA=ΔCHA
=>CI=CH
Xét ΔCEB có \(\dfrac{CI}{CE}=\dfrac{CH}{CB}\)
nên HI//EB
Tự vẽ hình đi nhé mk k thạo cái vẽ hình trên olm đâu bài giải đây :
Ta có : góc CAB+ góc EAB =180
a) Xét tam giác ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\)(phụ nhau)
=>300+\(\widehat{ACB}\)=900
=>\(\widehat{ACB}\)=600
Xét tam giác BEC có:
BA là đường cao (BA vuông góc với EC tại A)
BA là trung tuyến (A là trung điểm EC)
=>Tam giác BEC cân tại B mà \(\stackrel\frown{BCE}=60^0\)(cmt)
=>Tam giác BEC đều.
Phần b đou bn?