K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Xét tứ giác NPIK có 

\(\widehat{NKP}=\widehat{NIP}\left(=90^0\right)\)

Do đó: NPIK là tứ giác nội tiếp

hay N,P,I,K cùng thuộc 1 đường tròn

b: Xét tứ giác MKHI có

\(\widehat{MKH}+\widehat{MIH}=180^0\)

Do đó: MKHI là tứ giác nội tiếp

hay M,K,H,I cùng thuộc 1 đường tròn

8 tháng 9 2021

Xét tam giác ADE vuông tại E có:

\(AD^2=AE^2+DE^2\)(định lý Pytago)

\(\Rightarrow AD^2=\dfrac{117}{16}\left(m\right)\)

Xét tam giác ADC vuông tại D có đường cao DB có:

\(AD^2=AB.AC\)(hệ thức lượng trong tam giác vuông)

\(\Rightarrow AC=\dfrac{AD^2}{AB}=\dfrac{117}{16}:1,5=\dfrac{39}{8}\left(m\right)\)

Vậy chiều cao của cây là \(\dfrac{39}{8}m\)

13 tháng 4 2022

Giusp mình với mọi người ơi!!!

 

1) \(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}:\dfrac{\sqrt{x}-1}{5}\)

        \(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}-1}\) \(=\dfrac{5}{x+\sqrt{x}+1}\)

2) Ta thấy \(x+\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}+1\right)+1>1\forall x\)

\(\Rightarrow A< 5\)

 

17 tháng 10 2021

Bạn tách ra từng bạn một nhé!

17 tháng 10 2021

tách từng bài ra ý ạ??

Bài 7: 

Ta có: \(C=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)

\(=\dfrac{\sqrt{2}\left(4+\sqrt{7}\right)}{6+\sqrt{8+2\sqrt{7}}}+\dfrac{\sqrt{2}\left(4-\sqrt{7}\right)}{6-\sqrt{8-2\sqrt{7}}}\)

\(=\dfrac{\sqrt{2}\left(4+\sqrt{7}\right)}{7+\sqrt{7}}+\dfrac{\sqrt{2}\left(4-\sqrt{7}\right)}{7-\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{7}-1\right)\left(4+\sqrt{7}\right)}{6\sqrt{7}}+\dfrac{\sqrt{2}\left(\sqrt{7}+1\right)\left(4-\sqrt{7}\right)}{6\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(-3+3\sqrt{7}+3+3\sqrt{7}\right)}{6\sqrt{7}}\)

\(=\sqrt{2}\)

NV
29 tháng 6 2021

6.

Ta có:

\(A=\sqrt{20+\sqrt{20+...+\sqrt{20}}}>\sqrt{20+\sqrt{\dfrac{1}{16}}}=\dfrac{9}{2}\)

\(B=\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}>\sqrt[3]{24}=\sqrt[3]{\dfrac{192}{8}}>\sqrt[3]{\dfrac{125}{8}}=\dfrac{5}{2}\)

\(\Rightarrow A+B>\dfrac{9}{2}+\dfrac{5}{2}=7\)

\(A=\sqrt[]{20+\sqrt[]{20+...+\sqrt[]{20}}}< \sqrt[]{20+\sqrt[]{20+...+\sqrt[]{25}}}=5\)

\(B=\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{27}}}=3\)

\(\Rightarrow A+B< 5+3=8\)

Câu 2:

1: \(y=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)x+4=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)\cdot x=\sqrt{3}+5-4=\sqrt{3}+1\)

=>\(x=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{\left(\sqrt{3}+1\right)^2}{3-1}=\dfrac{4+2\sqrt{3}}{2}=2+\sqrt{3}\)

2: \(x^2-2\left(1-m\right)x-2m-5=0\)

=>\(x^2+\left(2m-2\right)x-2m-5=0\)

a: \(\Delta=\left(2m-2\right)^2-4\left(-2m-5\right)\)

\(=4m^2-8m+4+8m+20\)

\(=4m^2+24>=24>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Câu 1:

2: Thay x=2 và y=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2a-\left(-1\right)=5\\b\cdot2+a\cdot\left(-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a=5+\left(-1\right)=4\\2b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\2b=a+4=6\end{matrix}\right.\)

=>a=2 và b=3

2: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)

Khi tăng mẫu số thêm 4 đơn vị thì phân số đó bằng 1/3 nên ta có:

\(\dfrac{a}{b+4}=\dfrac{1}{3}\)

=>3a=b+4

=>3a-b=4(1)

Khi giảm mẫu số đi 2 đơn vị thì phân số bằng với 2/3 nên ta có:

\(\dfrac{a}{b-2}=\dfrac{2}{3}\)

=>3a=2(b-2)

=>3a=2b-4

=>3a-2b=-4(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=4\\3a-2b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=8\\3a-b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=8\\3a=b+4=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=8\end{matrix}\right.\)(nhận)

Vậy: Phân số cần tìm là \(\dfrac{4}{8}\)

9 tháng 12 2023

loading...  loading...  

b: Thay x=-1 và y=-3 vào (d1), ta được:

-3=-1+2

=>-3=1(loại)

=>A ko thuộc (d1)

Thay x=-1 và y=1 vào (d1), ta đc:

-1+2=1

=>1=1

=>B thuộc (d1)

c: Tọa độ C là:

x+2=-1/2x+2 và y=x+2

=>x=0 và y=2

Bài 1: 

1) Ta có: \(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

\(=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=\dfrac{a-1}{\sqrt{a}}\)

2) Thay \(a=3-2\sqrt{2}\) vào M, ta được:

\(M=\dfrac{3-2\sqrt{2}-1}{\sqrt{2}-1}=\dfrac{-2\sqrt{2}+2}{\sqrt{2}-1}\)

\(=\dfrac{-2\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-2\)

8: Ta có: \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2