K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

1) (x + 1)2 + (x - 1)(x2 + x + 1) + (x - 1)3

= x2 + 2x + 1 + x3 - 1 + x3 - 3x2 + 3x - 1

= 2x3 - 2x2 + 5x + 1

2) (x - 2)2 + (2x + 1)2 + (x + 1)3

= x2 - 4x + 4 + 4x2 + 4x + 1 + x3 + 3x2 + 3x + 1

= x3 + 8x2 + 3x + 6

3) (x + 1)(x2 - x + 1) - (x - 3)2

= x3 + 1 - x2 + 6x - 9

= x3 - x2 + 6x - 8 

4) (3x + 2)2 + (2x - 1)2 - (x + 3)2

= 9x2 + 12x + 4 + 4x2 - 4x + 1 - x2 - 6x - 9

= 12x2 + 2x - 4

25 tháng 7 2019

a) Ta có: \(\left(x-2\right).\left(x^2+2x+4\right)+\left(x-2\right)^3-\left(x-2\right).\left(x+2\right)\) 

\(=\left(x^3-8\right)+\left(x-2\right)^3-\left(x^2-4\right)\)  

\(=x^3-8+x^3-6x^2+12x-8-x^2+4\) 

\(=2x^3-7x^2+12x-12\) 

b) Ta có: \(\left(3-2x\right)^2-\left(x+3\right)^2-\left(2x+1\right)\left(2x-1\right)\) 

\(=9-12x+4x^2-x^2-6x-9-4x^2+1\)  

\(=3x^2-18x+1\)

25 tháng 7 2019

\(=2x^3-7x^2+12x-12\)\(a.\left(x-2\right).\left(x^2+2x+4\right)+\left(x-2\right)^3-\left(x-2.\left(x+2\right)\right)\)

\(=\left(x^3-8\right)+\left(x-2\right)^3-\left(x^2-4\right)\)

~còn nữa~

25 tháng 7 2019

Lê Thị Hương Giang cảm ơn bạn

6 tháng 10 2019

1) đặt 2x+1 = a => \(a^4-3a^2+2=\left(a^2-1\right)\left(a^2-2\right)=\)\(\left(a-1\right)\left(a+1\right)\left(a-\sqrt{2}\right)\left(a+\sqrt{2}\right)\)

=(2x+1-1)(2x+1+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\)) = 4x(x+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\))

2) =(x2-x)(x2-x-2)-3

đặt x2-x = b => b(b-2)-3 = b2-2b-3 = (b+1)(b-3) = (x2-x+1)(x2-x-3)

3) đặt x2+2x-1 = c => c2-3xc+2x2 = (c-x)(c-2x) = (x2+2x-1-x)(x2+2x-1-2x) = (x2+x-1)(x2-1) = (x2+x-1)(x-1)(x+1)

tìm x

x3-8 +(x-2)(x+1)=0 <=> (x-2)(x2+2x+4)+(x-2)(x+1)=0 <=>(x-2)(x2+2x+4+x+1)=0 <=> x=2 (vì x2+3x+5= (x+\(\frac{3}{2}\))2 +\(\frac{11}{4}\)>0)

vậy x=2 

6 tháng 10 2019

2) \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)-3\)

\(=\left(x^2-x\right)\left(x^2-x-2\right)-3\)(1)

Đặt \(x^2-x=t\)

\(\Rightarrow\left(1\right)=t\left(t-2\right)-3=t^2-2t+1-4\)

\(=\left(t-1\right)^2-4\)

\(=\left(t+3\right)\left(t-5\right)\)

Thay \(x^2-x=t\), ta được:

\(BTDNT=\left(x^2-x+3\right)\left(x^2-x-5\right)\)

8 tháng 10 2021

\(d,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow24x=-10\Leftrightarrow x=-\dfrac{5}{12}\\ e,\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=10\Leftrightarrow x=\dfrac{10}{9}\\ f,\Leftrightarrow9x^2+18x+9-18x=36+x^3-27\\ \Leftrightarrow x^3-9x^2=0\Leftrightarrow x^2\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

4 tháng 3 2020

a) Ta có : 

\(3x=3\left(x+2\right)\)

\(\Leftrightarrow3x=3x+2\)

\(\Leftrightarrow0=2\) ( vô lí )

Do đó pt đã cho vô nghiệm

b) Ta có  \(\left|x\right|=-x^2-2\) (1)

Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)

VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)

Do đó : \(VT\ne VP\)

Vì vậy pt đã cho vô nghiệm